Autism Spectrum Disorder (ASD) is a severe neurodevelopmental disorder. To enhance the understanding of the gut microbiota structure in ASD children at different ages as well as the relationship between gut microbiota and fecal metabolites, we first used the 16S rRNA sequencing to evaluate the gut microbial population in a cohort of 143 children aged 2-13 years old. We found that the α-diversity of ASD group showed no significant change with age, while the TD group showed increased α-diversity with age, which indicates that the compositional development of the gut microbiota in ASD varies at different ages in ways that are not consistent with TD group. Recent studies have shown that chronic constipation is one of the most commonly obvious gastrointestinal (GI) symptoms along with ASD core symptoms. To further investigate the potential interaction effects between ASD and GI symptoms, the 30 C-ASD and their aged-matched TD were picked out to perform metagenomics analysis. We observed that C-ASD group displayed decreased diversity, depletion of species of Sutterella, Prevotella, and Bacteroides as well as dysregulation of associated metabolism activities, which may involve in the pathogenesis of C-ASD. Consistent with metagenomic analysis, liquid chromatography-mass spectrometry (LC/ MS) revealed some of the differential metabolites between C-ASD and TD group were involved in the metabolic network of neurotransmitters including serotonin, dopamine, histidine, and GABA. Furthermore, we found these differences in metabolites were associated with altered abundance of specific bacteria. The study suggested possible future modalities for ASD intervention through targeting the specific bacteria associated with neurotransmitter metabolism.
BackgroundGestational diabetes mellitus (GDM) is one type of diabetes that presents during pregnancy and significantly increases the risk of a number of adverse consequences for the fetus and mother. The microRNAs (miRNA) have recently been demonstrated to abundantly and stably exist in serum and to be potentially disease-specific. However, no reported study investigates the associations between serum miRNA and GDM.Methodology/Principal FindingsWe systematically used the TaqMan Low Density Array followed by individual quantitative reverse transcription polymerase chain reaction assays to screen miRNAs in serum collected at 16–19 gestational weeks. The expression levels of three miRNAs (miR-132, miR-29a and miR-222) were significantly decreased in GDM women with respect to the controls in similar gestational weeks in our discovery evaluation and internal validation, and two miRNAs (miR-29a and miR-222) were also consistently validated in two-centric external validation sample sets. In addition, the knockdown of miR-29a could increase Insulin-induced gene 1 (Insig1) expression level and subsequently the level of Phosphoenolpyruvate Carboxy Kinase2 (PCK2) in HepG2 cell lines.Conclusions/SignificanceSerum miRNAs are differentially expressed between GDM women and controls and could be candidate biomarkers for predicting GDM. The utility of miR-29a, miR-222 and miR-132 as serum-based non-invasive biomarkers warrants further evaluation and optimization.
Cancer-testis (CT) genes represent the similarity between the processes of spermatogenesis and tumorigenesis. It is possible that their selective expression pattern can help identify driver genes in cancer. In this study, we integrate transcriptomics data from multiple databases and systematically identify 876 new CT genes in 19 cancer types. We explore their relationship with testis-specific regulatory elements. We propose that extremely highly expressed CT genes (EECTGs) are potential drivers activated through epigenetic mechanisms. We find mutually exclusive associations between EECTGs and somatic mutations in mutated genes, such as PIK3CA in breast cancer. We also provide evidence that promoter demethylation and close non-coding RNAs (namely, CT-ncRNAs) may be two mechanisms to reactivate EECTG gene expression. We show that the meiosis-related EECTG (MEIOB) and its nearby CT-ncRNA have a role in tumorigenesis in lung adenocarcinoma. Our findings provide methods for identifying epigenetic-driver genes of cancer, which could serve as targets of future cancer therapies.
Our results provide a better understanding of the role of circulating miRNAs, particularly miR-486, miR-146b and miR-15b, in predicting the future risk of T2D in obese children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.