Long-term continuous soybean cropping can lead to the aggravation of soil fungal disease. However, the manner in which the fungal community and functional groups of fungi are affected by continuous soybean cropping remains unclear. We investigated the fungal abundance, composition and diversity during soybean rotation (RS), 2-year (SS) and long-term (CS) continuous soybean cropping systems using quantitative real-time PCR and high-throughput sequencing. The results showed that the fungal abundance was significantly higher in CS than in SS and RS. CS altered the fungal composition. Compared with RS, SS had an increase of 29 and a decrease of 12 genera in fungal relative abundance, and CS increased 38 and decreased 17 genera. The Shannon index was significantly higher in CS and SS than in RS. The result of principal coordinate analysis (PCoA) showed that CS and SS grouped together and were clearly separated from RS on the PCoA1. A total of 32 features accounted for the differences in fungal composition across RS, SS, and CS. The relative abundance of 10 potentially pathogenic and 10 potentially beneficial fungi changed, and most of their relative abundances dramatically increased in SS and CS compared with RS. Our study indicated that CS results in selective stress on pathogenic and beneficial fungi and causes the development of the fungal community structure that is antagonistic to plant health.
Active optical metadevices have attracted growing interest for the use in nanophotonics owing to their flexible control of optics. In this work, by introducing the phase-changing material Ge2Sb2Te5 (GST), which exhibits remarkably different optical properties in different crystalline states, we investigate the active optical radiation manipulation of a resonant silicon metasurface. A designed double-nanodisk array supports a strong toroidal dipole excitation and an obvious electric dipole response. When GST is added, the toroidal response is suppressed, and the toroidal and electric dipoles exhibit pronounced destructive interference owing to the similarity of their far-field radiation patterns. When the crystallization ratio of GST is varied, the optical radiation strength and spectral position of the scattering minimum can be dynamically controlled. Our work provides a route to flexible optical radiation modulation using metasurfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.