With the potential development of new disease-modifying Alzheimer’s Disease (AD) therapies, simple, widely available screening tests are needed to identify which individuals who are experiencing symptoms of cognitive or behavioral decline should be further evaluated for initiation of treatment. A blood-based test for AD would be a less invasive and less expensive screening tool than the currently approved CSF or amyloid β-PET diagnostic tests. We examined whether plasma phosphorylated tau at residue 181 (pTau181) could differentiate between clinically diagnosed or autopsy confirmed AD and Frontotemporal Lobar Degeneration (FTLD). Plasma pTau181 concentrations were increased by 3.5 fold in AD compared to controls and differentiated AD from both clinically diagnosed (Receiver Operating Characteristic Area Under the Curve [AUC]=0.894) and autopsy confirmed FTLD (AUC=0.878). Plasma pTau181 identified amyloid β-PET positive individuals regardless of clinical diagnosis and correlated with cortical tau protein deposition measured by
18
F-Flortaucipir PET. Plasma pTau181 may be useful to screen for tau pathology associated with AD.
The default mode network (DMN) supports memory functioning and may be sensitive to preclinical Alzheimer's pathology. Little is known, however, about the longitudinal trajectory of this network's intrinsic functional connectivity (FC). In this study, we evaluated longitudinal FC in 111 cognitively normal older human adults (ages 49-87, 46 women/65 men), 92 of whom had at least three task-free fMRI scans ( = 353 total scans). Whole-brain FC and three DMN subnetworks were assessed: (1) within-DMN, (2) between anterior and posterior DMN, and (3) between medial temporal lobe network and posterior DMN. Linear mixed-effects models demonstrated significant baseline age × time interactions, indicating a nonlinear trajectory. There was a trend toward increasing FC between ages 50-66 and significantly accelerating declines after age 74. A similar interaction was observed for whole-brain FC. status did not predict baseline connectivity or change in connectivity. After adjusting for network volume, changes in within-DMN connectivity were specifically associated with changes in episodic memory and processing speed but not working memory or executive functions. The relationship with processing speed was attenuated after covarying for white matter hyperintensities (WMH) and whole-brain FC, whereas within-DMN connectivity remained associated with memory above and beyond WMH and whole-brain FC. Whole-brain and DMN FC exhibit a nonlinear trajectory, with more rapid declines in older age and possibly increases in connectivity early in the aging process. Within-DMN connectivity is a marker of episodic memory performance even among cognitively healthy older adults. Default mode network and whole-brain connectivity, measured using task-free fMRI, changed nonlinearly as a function of age, with some suggestion of early increases in connectivity. For the first time, longitudinal changes in DMN connectivity were shown to correlate with changes in episodic memory, whereas volume changes in relevant brain regions did not. This relationship was not accounted for by white matter hyperintensities or mean whole-brain connectivity. Functional connectivity may be an early biomarker of changes in aging but should be used with caution given its nonmonotonic nature, which could complicate interpretation. Future studies investigating longitudinal network changes should consider whole-brain changes in connectivity.
Introduction
We investigated plasma proteomic markers of astrocytopathy, brain degeneration, plasticity, and inflammation in sporadic early‐onset versus late‐onset Alzheimer's disease (EOAD and LOAD).
Methods
Plasma was analyzed using ultra‐sensitive immuno‐based assays from 33 EOAD, 30 LOAD, and 36 functionally normal older adults.
Results
Principle component analyses identified 3 factors: trophic (BDNF, VEGF, TGFβ), degenerative (GFAP, NfL), and inflammatory (TNFα, IL‐6, IP‐10, IL‐10). Trophic factor was elevated in both AD groups and associated with cognition and gray matter volumes. Degenerative factor was elevated in EOAD, with higher levels associated with worse functioning in this group. Biomarkers of inflammation were not significantly different between groups and were only associated with age.
Disucssion
Plasma proteomic biomarkers provide novel means of investigating molecular processes in vivo and their contributions to clinical outcomes. We present initial investigations of several of these fluid biomarkers, capturing aspects of astrocytopathy, neuronal injury, cellular plasticity, and inflammation in EOAD versus LOAD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.