SummarySuccessful treatment of human tuberculosis requires 6-9 months' therapy with multiple antibiotics. Incomplete clearance of tubercle bacilli frequently results in disease relapse, presumably as a result of reactivation of persistent drug-tolerant Mycobacterium tuberculosis cells, although the nature and location of these persisters are not known. In other pathogens, antibiotic tolerance is often associated with the formation of biofilms -organized communities of surface-attached cells -but physiologically and genetically defined M. tuberculosis biofilms have not been described. Here, we show that M. tuberculosis forms biofilms with specific environmental and genetic requirements distinct from those for planktonic growth, which contain an extracellular matrix rich in free mycolic acids, and harbour an important drug-tolerant population that persist despite exposure to high levels of antibiotics.
Lipoarabinomannans (LAM) and lipomannans (LM) are integral parts of the mycobacterial cell wall recognized by cells involved in the innate immune response and have been found to modulate the cytokine response. Typically, mannosylated LAM from pathogenic mycobacteria have been reported to be anti-inflammatory, whereas phosphoinositol-substituted LAM from nonpathogenic species are proinflammatory molecules. In this study, we show that LM from several mycobacterial species, including Mycobacterium chelonae, Mycobacterium kansasii, and Mycobacterium bovis bacillus Calmette-Guérin, display a dual function by stimulating or inhibiting proinflammatory cytokine synthesis through different pathways in murine primary macrophages. LM, but none of the corresponding LAM, induce macrophage activation characterized by cell surface expression of CD40 and CD86 and by TNF and NO secretion. This activation is dependent on the presence of Toll-like receptor (TLR) 2 and mediated through the adaptor protein myeloid differentiation factor 88 (MyD88), but independent of either TLR4 or TLR6 recognition. Surprisingly, LM exerted also a potent inhibitory effect on TNF, IL-12p40, and NO production by LPS-activated macrophages. This TLR2-, TLR6-, and MyD88-independent inhibitory effect is also mediated by LAM from M. bovis bacillus Calmette-Guérin but not by LAM derived from M. chelonae and M. kansasii. This study provides evidence that mycobacterial LM bear structural motifs susceptible to interact with different pattern recognition receptors with pro- or anti-inflammatory effects. Thus, the ultimate response of the host may therefore depend on the prevailing LM or LAM in the mycobacterial envelope and the local host cell receptor availability.
The natural resistance of Mycobacterium abscessus to most commonly available antibiotics seriously limits chemotherapeutic treatment options, which is particularly challenging for cystic fibrosis patients infected with this rapid-growing mycobacterium. New drugs with novel molecular targets are urgently needed against this emerging pathogen. However, the discovery of such new chemotypes has not been appropriately performed. Here, we demonstrate the utility of a phenotypic screen for bactericidal compounds against M. abscessus using a library of compounds previously validated for activity against M. tuberculosis. We identified a new piperidinol-based molecule, PIPD1, exhibiting potent activity against clinical M. abscessus strains in vitro and in infected macrophages. Treatment of infected zebrafish with PIPD1 correlated with increased embryo survival and decreased bacterial burden. Whole genome analysis of M. abscessus strains resistant to PIPD1 identified several mutations in MAB_4508, encoding a protein homologous to MmpL3. Biochemical analyses demonstrated that while de novo mycolic acid synthesis was unaffected, PIPD1 strongly inhibited the transport of trehalose monomycolate, thereby abrogating mycolylation of arabinogalactan. Mapping the mutations conferring resistance to PIPD1 on a MAB_4508 tridimensional homology model defined a potential PIPD1-binding pocket. Our data emphasize a yet unexploited chemical structure class against M. abscessus infections with promising translational development possibilities.
Analysis of the genetic locus encompassing a cell wall polysaccharide (CWPS) biosynthesis operon of eight strains of Lactococcus lactis, identified as belonging to the same CWPS type C genotype, revealed the presence of a variable region among the strains examined. The results allowed the identification of five subgroups of the C type named subtypes C1 to C5. This variable region contains genes encoding glycosyltransferases that display low or no sequence homology between the subgroups. In this study, we purified an acidic polysaccharide from the cell wall of L. lactis 3107 (subtype C2) and confirmed that it is structurally different from the previously established CWPS of subtype C1 L. lactis MG1363. The CWPS of L. lactis 3107 is composed of pentasaccharide repeating units linked by phosphodiester bonds with the structure 6-α-Glc-3-β-Galf-3-β-GlcNAc-2-β-Galf-6-α-GlcNAc-1-P. Combinations of genes from the variable region of subtype C2 were introduced into a mutant of subtype C1 L. lactis NZ9000 deficient in CWPS biosynthesis. The resulting recombinant mutant synthesized a polysaccharide with a composition characteristic of that of subtype C2 L. lactis 3107 and not wild-type C1 L. lactis NZ9000. By challenging the recombinant mutant with various lactococcal phages, we demonstrated that CWPS is the host cell surface receptor of tested bacteriophages of both the P335 and 936 groups and that differences between the CWPS structures play a crucial role in determining phage host range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.