Existing thermal shift-based mass spectrometry approaches are able to identify target proteins without chemical modification of the ligand, but they are suffering from complicated workflows with limited throughput. Herein, we present a new thermal shift-based method, termed matrix thermal shift assay (mTSA), for fast deconvolution of ligand-binding targets and binding affinities at the proteome level. In mTSA, a sample matrix, treated horizontally with five different compound concentrations and vertically with five technical replicates of each condition, was denatured at a single temperature to induce protein precipitation, and then, data-independent acquisition was employed for quick protein quantification. Compared with previous thermal shift assays, the analysis throughput of mTSA was significantly improved, but the costs as well as efforts were reduced. More importantly, the matrix experiment design allowed simultaneous computation of the statistical significance and fitting of the dose–response profiles, which can be combined to enable a more accurate identification of target proteins, as well as reporting binding affinities between the ligand and individual targets. Using a pan-specific kinase inhibitor, staurosporine, we demonstrated a 36% improvement in screening sensitivity over the traditional thermal proteome profiling (TPP) and a comparable sensitivity with a latest two-dimensional TPP. Finally, mTSA was successfully applied to delineate the target landscape of perfluorooctanesulfonic acid (PFOS), a persistent organic pollutant that is hard to perform modification on, and revealed several potential targets that might account for the toxicities of PFOS.
Protein arginine methylation plays an important role in regulating protein functions in different cellular processes, and its dysregulation may lead to a variety of human diseases. Recently, arginine methylation was found to be involved in modulating protein liquid–liquid phase separation (LLPS), which drives the formation of different membraneless organelles (MLOs). Here, we developed a steric effect–based chemical-enrichment method (SECEM) coupled with liquid chromatography–tandem mass spectrometry to analyze arginine dimethylation (DMA) at the proteome level. We revealed by SECEM that, in mammalian cells, the DMA sites occurring in the RG/RGG motifs are preferentially enriched within the proteins identified in different MLOs, especially stress granules (SGs). Notably, global decrease of protein arginine methylation severely impairs the dynamic assembly and disassembly of SGs. By further profiling the dynamic change of DMA upon SG formation by SECEM, we identified that the most dramatic change of DMA occurs at multiple sites of RG/RGG–rich regions from several key SG-contained proteins, including G3BP1, FUS, hnRNPA1, and KHDRBS1. Moreover, both in vitro arginine methylation and mutation of the identified DMA sites significantly impair LLPS capability of the four different RG/RGG–rich regions. Overall, we provide a global profiling of the dynamic changes of protein DMA in the mammalian cells under different stress conditions by SECEM and reveal the important role of DMA in regulating protein LLPS and SG dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.