In the hippocampal CA1 area, a relatively homogenous population of pyramidal cells is accompanied by a diversity of GABAergic interneurons. Previously, we found that parvalbumin-expressing basket, axo-axonic, bistratified, and oriens-lacunosum moleculare cells, innervating different domains of pyramidal cells, have distinct firing patterns during network oscillations in vivo. A second family of interneurons, expressing cholecystokinin but not parvalbumin, is known to target the same domains of pyramidal cells as do the parvalbumin cells. To test the temporal activity of these independent and parallel GABAergic inputs, we recorded the precise spike timing of identified cholecystokinin interneurons during hippocampal network oscillations in anesthetized rats and determined their molecular expression profiles and synaptic targets. The cells were cannabinoid receptor type 1 immunopositive. Contrary to the stereotyped firing of parvalbumin interneurons, cholecystokinin-expressing basket and dendrite-innervating cells discharge, on average, with 1.7 Ϯ 2.0 Hz during high-frequency ripple oscillations in an episode-dependent manner. During theta oscillations, cholecystokinin-expressing interneurons fire with 8.8 Ϯ 3.3 Hz at a characteristic time on the ascending phase of theta waves (155 Ϯ 81°), when place cells start firing in freely moving animals. The firing patterns of some interneurons recorded in drug-free behaving rats were similar to cholecystokinin cells in anesthetized animals. Our results demonstrate that cholecystokinin-and parvalbumin-expressing interneurons make different contributions to network oscillations and play distinct roles in different brain states. We suggest that the specific spike timing of cholecystokinin interneurons and their sensitivity to endocannabinoids might contribute to differentiate subgroups of pyramidal cells forming neuronal assemblies, whereas parvalbumin interneurons contribute to synchronizing the entire network.
The formation and recall of sensory, motor, and cognitive representations require coordinated fast communication among multiple cortical areas. Interareal projections are mainly mediated by glutamatergic pyramidal cell projections; only few long-range GABAergic connections have been reported. Using in vivo recording and labeling of single cells and retrograde axonal tracing, we demonstrate novel long-range GABAergic projection neurons in the rat hippocampus: (1) somatostatin-and predominantly mGluR1␣-positive neurons in stratum oriens project to the subiculum, other cortical areas, and the medial septum; (2) neurons in stratum oriens, including somatostatin-negative ones; and (3) trilaminar cells project to the subiculum and/or other cortical areas but not the septum. These three populations strongly increase their firing during sharp wave-associated ripple oscillations, communicating this network state to the septotemporal system. Finally, a large population of somatostatin-negative GABAergic cells in stratum radiatum project to the molecular layers of the subiculum, presubiculum, retrosplenial cortex, and indusium griseum and fire rhythmically at high rates during theta oscillations but do not increase their firing during ripples. The GABAergic projection axons have a larger diameter and thicker myelin sheet than those of CA1 pyramidal cells. Therefore, rhythmic IPSCs are likely to precede the arrival of excitation in cortical areas (e.g., subiculum) that receive both glutamatergic and GABAergic projections from the CA1 area. Other areas, including the retrosplenial cortex, receive only rhythmic GABAergic CA1 input. We conclude that direct GABAergic projections from the hippocampus to other cortical areas and the septum contribute to coordinating oscillatory timing across structures.
Autophagy is crucial for neuronal integrity. Loss of key autophagic components leads to progressive neurodegeneration and structural defects in pre- and postsynaptic morphologies. However, the molecular mechanisms regulating autophagy in the brain remain elusive. Similarly, while it is widely accepted that protein turnover is required for synaptic plasticity, the contribution of autophagy to the degradation of synaptic proteins is unknown. Here, we report that BDNF signaling via the tropomyosin receptor kinase B (TrkB) and the phosphatidylinositol-3' kinase (PI3K)/Akt pathway suppresses autophagy in vivo. In addition, we demonstrate that suppression of autophagy is required for BDNF-induced synaptic plasticity and for memory enhancement under conditions of nutritional stress. Finally, we identify three key remodelers of postsynaptic densities as cargo of autophagy. Our results establish autophagy as a pivotal component of BDNF signaling, which is essential for BDNF-induced synaptic plasticity. This molecular mechanism underlies behavioral adaptations that increase fitness in times of scarcity.
Hippocampal CA1 pyramidal cells, which receive γ-aminobutyric acid (GABA)ergic input from at least 18 types of presynaptic neuron, express 14 subunits of the pentameric GABA A receptor. The relative contribution of any subunit to synaptic and extrasynaptic receptors influences the dynamics of GABA and drug actions. Synaptic receptors mediate phasic GABA-evoked conductance and extrasynaptic receptors contribute to a tonic conductance. We used freezefracture replica-immunogold labelling, a sensitive quantitative immunocytochemical method, to detect synaptic and extrasynaptic pools of the alpha1, alpha2 and beta3 subunits. Antibodies to the cytoplasmic loop of the subunits showed immunogold particles concentrated on distinct clusters of intramembrane particles (IMPs) on the cytoplasmic face of the plasma membrane on the somata, dendrites and axon initial segments, with an abrupt decrease in labelling at the edge of the IMP cluster. Neuroligin-2, a GABAergic synapse-specific adhesion molecule, co-labels all beta3 subunit-rich IMP clusters, therefore we considered them synapses. Double-labelling for two subunits showed that virtually all somatic synapses contain the alpha1, alpha2 and beta3 subunits. The extrasynaptic plasma membrane of the somata, dendrites and dendritic spines showed low- Europe PMC Funders Author ManuscriptsEurope PMC Funders Author Manuscripts density immunolabelling. Synaptic labelling densities on somata for the alpha1, alpha2 and beta3 subunits were 78-132, 94 and 79 times higher than on the extrasynaptic membranes, respectively. As GABAergic synapses occupy 0.72% of the soma surface, the fraction of synaptic labelling was 33-48 (alpha1), 40 (alpha2) and 36 (beta3)% of the total somatic surface immunolabelling. Assuming similar antibody access to all receptors, about 60% of these subunits are in extrasynaptic receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.