Yeasts, which have been a component of the human diet for at least 7000 years, possess an elaborate cell wall α-mannan. The influence of yeast mannan on the ecology of the human microbiota is unknown. Here we show that yeast α-mannan is a viable food source for Bacteroides thetaiotaomicron (Bt), a dominant member of the microbiota. Detailed biochemical analysis and targeted gene disruption studies support a model whereby limited cleavage of α-mannan on the surface generates large oligosaccharides that are subsequently depolymerized to mannose by the action of periplasmic enzymes. Co-culturing studies showed that metabolism of yeast mannan by Bt presents a ‘selfish’ model for the catabolism of this recalcitrant polysaccharide. This report shows how a cohort of highly successful members of the microbiota has evolved to consume sterically-restricted yeast glycans, an adaptation that may reflect the incorporation of eukaryotic microorganisms into the human diet.
Carbohydrate polymers drive microbial diversity in the human gut
microbiota. It is unclear, however, whether bacterial consortia or single
organisms are required to depolymerize highly complex glycans. Here we show that
the gut bacterium Bacteroides thetaiotaomicron utilizes the
most structurally complex glycan known; the plant pectic polysaccharide
rhamnogalacturonan-II, cleaving all but one of its 21 distinct glycosidic
linkages. We show that rhamnogalacturonan-II side-chain and backbone
deconstruction are coordinated, to overcome steric constraints, and that
degradation reveals previously undiscovered enzyme families and novel catalytic
activities. The degradome informs revision of the current structural model of
RG-II and highlights how individual gut bacteria orchestrate manifold enzymes to
metabolize the most challenging glycans in the human diet.
SUMMARY
STING is an essential signaling molecule for DNA and cyclic di-GMP (c-di-GMP)-mediated type I interferon (IFN) production via TANK-binding kinase 1 (TBK1) and Interferon regulatory factor 3 (IRF3) pathway. It contains an N-terminal transmembrane region and a cytosolic C-terminal domain (CTD). Here, we describe crystal structures of STING CTD alone and complexed with c-di-GMP in a unique binding mode. The strictly conserved AA153-173 region was shown to be cytosolic and participated in dimerization via hydrophobic interactions. The STING CTD functions as a dimer and the dimerization was independent of post-translational modifications. Binding of c-di-GMP enhanced interaction of a shorter construct of STING CTD (residues 139-344) with TBK1. This suggests an extra TBK1 binding site, other than Ser358. This study provides a glimpse into the unique architecture of STING and sheds new light on the mechanism of c-di-GMP-mediated TBK1 signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.