Rings are the most frequently revealed substructure in ALMA dust observations of protoplanetary disks, but their origin is still hotly debated. In this paper, we identify dust substructures in 12 disks and measure their properties to investigate how they form. This subsample of disks is selected from a high-resolution (∼ 0.12 ) ALMA 1.33 mm survey of 32 disks in the Taurus star-forming region, which was designed to cover a wide range of sub-mm brightness and to be unbiased to previously known substructures. While axisymmetric rings and gaps are common within our sample, spiral patterns and high contrast azimuthal asymmetries are not detected. Fits of disk models to the visibilities lead to estimates of the location and shape of gaps and rings, the flux in each disk component, and the size of the disk. The dust substructures occur across a wide range of stellar mass and disk brightness. Disks with multiple rings tend to be more massive and more extended. The correlation between gap locations and widths, the intensity contrast between
We present a high-resolution (∼ 0. 12, ∼ 16 au, mean sensitivity of 50 µJy beam −1 at 225 GHz) snapshot survey of 32 protoplanetary disks around young stars with spectral type earlier than M3 in the Taurus star-forming region using Atacama Large Millimeter Array (ALMA). This sample includes most mid-infrared excess members that were not previously imaged at high spatial resolution, excluding close binaries and highly extincted objects, thereby providing a more representative look at disk properties at 1-2 Myr. Our 1.3 mm continuum maps reveal 12 disks with prominent dust gaps and rings, 2 of which are around primary stars in wide binaries, and 20 disks with no resolved features at the observed resolution (hereafter smooth disks), 8 of which are around the primary star in wide binaries. The smooth disks were classified based on their lack of resolved substructures, but their most prominent property is that they are all compact with small effective emission radii (R eff,95% 50 au). In contrast, all disks with R eff,95% of at least 55 au in our sample show detectable substructures. Nevertheless, their inner emission cores (inside the resolved gaps) have similar peak brightness, power law profiles, and transition radii to the compact smooth disks, so the primary difference between these two categories is the lack of outer substructures in the latter. These compact disks may lose their outer disk through arXiv:1906.10809v1 [astro-ph.SR] 26 Jun 2019 2 Long et al.fast radial drift without dust trapping, or they might be born with small sizes. The compact dust disks, as well as the inner disk cores of extended ring disks, that look smooth at the current resolution will likely show small-scale or low-contrast substructures at higher resolution. The correlation between disk size and disk luminosity correlation demonstrates that some of the compact disks are optically thick at millimeter wavelengths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.