Inherited bone marrow failure syndromes (IBMFSs) are a group of congenital rare diseases characterized by bone marrow failure, congenital anomalies, high genetic heterogeneity, and predisposition to cancer. Appropriate treatment and cancer surveillance ideally depend on the identification of the mutated gene. A next-generation sequencing (NGS) panel of genes could be 1 initial genetic screening test to be carried out in a comprehensive study of IBMFSs, allowing molecular detection in affected patients. We designed 2 NGS panels of IBMFS genes: version 1 included 129 genes and version 2 involved 145 genes. The cohort included a total of 204 patients with suspected IBMFSs without molecular diagnosis. Capture-based targeted sequencing covered > 99% of the target regions of 145 genes, with more than 20 independent reads. No differences were seen between the 2 versions of the panel. The NGS tool allowed a total of 91 patients to be diagnosed, with an overall molecular diagnostic rate of 44%. Among the 167 patients with classified IBMFSs, 81 patients (48%) were diagnosed. Unclassified IBMFSs involved a total of 37 patients, of whom 9 patients (24%) were diagnosed. The preexisting diagnosis of 6 clinically classified patients (6%) was amended, implying a change of therapy for some of them. Our NGS IBMFS gene panel assay is a useful tool in the molecular diagnosis of IBMFSs and a reasonable option as the first tier genetic test in these disorders.
Difficulties in the collection of hematopoietic stem and progenitor cells (HSPCs) from Fanconi anemia (FA) patients have limited the gene therapy in this disease. We have investigated (ClinicalTrials.gov, NCT02931071) the safety and efficacy of filgrastim and plerixafor for mobilization of HSPCs and collection by leukapheresis in FA patients. Nine of eleven enrolled patients mobilized beyond the threshold level of 5 CD34 + cells/mL required to initiate apheresis. A median of 21.8 CD34 + cells/mL was reached at the peak of mobilization. Significantly, the oldest patients (15 and 16 years old) were the only ones who did not reach that threshold. A median of 4.27 million CD34 + cells/kg was collected in 2 or 3 aphereses. These numbers were markedly decreased to 1.1 million CD34 + cells/kg after immunoselection, probably because of weak expression of the CD34 antigen. However, these numbers were sufficient to facilitate the engraftment of corrected HSPCs in non-conditioned patients. No procedure-associated serious adverse events were observed. Mobilization of CD34 + cells correlated with younger age, higher leukocyte counts and hemoglobin values, lower mean corpuscular volume, and higher proportion of CD34 + cells in bone marrow (BM). All these values offer crucial information for the enrollment of FA patients for gene therapy protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.