Oxygen free radicals are considered to be important components involved in the pathophysiological tissue alterations observed during ischemia-reperfusion (I/R). In this study, we investigated the putative protective effects of melatonin treatment on renal I/R injury. Wistar albino rats were unilaterally nephrectomized and subjected to 45 min of renal pedicle occlusion followed by 1, 3, 6, 24, 48 hr or 1 wk of reperfusion. Melatonin (10 mg/kg, s.c.) or vehicle was administered twice, 15 min prior to ischemia and immediately before the reperfusion period. At the end of the reperfusion periods, rats were decapitated. Kidney samples were taken for histological examination or the determination of renal malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity and protein oxidation (PO). Serum creatinine and blood urea nitrogen (BUN) concentrations were measured for the evaluation of renal function. The results revealed that I/R induced nephrotoxicity, as evidenced by increases in BUN and creatinine levels at each time point, was reversed by melatonin treatment. The decrease in GSH and increases in MDA, MPO and PO induced by I/R indicated that renal injury involves free radical formation. As melatonin administration reversed these oxidant responses, improved renal function and microscopic damage, it seems likely that melatonin protects kidney tissue against oxidative damage.
The anti-tumour drug methotrexate (MTX) induces intestinal mucosa injury resulting in malabsorption and diarrhoea. The purpose of this study was to investigate whether exogenous melatonin could protect the gut from MTX-induced damage in rats. A single dose of MTX (20 mg kg(-1), i.p.) was followed by i.p. saline or melatonin injections (10 mg kg(-1), MTX + Mel) for the next 5 days. On the fifth day, intestinal transit was assessed using charcoal propagation. Rats were decapitated and small intestinal segments were fixed for light (LM) and scanning electron microscope (SEM) examinations. Other intestinal segments were stored to measure glutathione (GSH) and malondialdehyde (MDA) levels, myeloperoxidase (MPO) and ATPase activity. MTX led to loss of more than 10% of the initial body weight (p < 0.01). Conversely, weight loss was markedly less in the melatonin-treated MTX group (p < 0.05). Bowel motility was increased in MTX-treated rats, while the transit index in the MTX-Mel group was not different from the control group. MTX caused decreases in GSH levels and ATPase activity, with increases in MDA levels and MPO activity. These changes were reversed in MTX-Mel-treated rats (p < 0.05-p < 0.001). LM and SEM in the MTX group revealed desquamation of surface epithelium and glandular degeneration, while the epithelium was slightly damaged in the MTX-Mel group. In conclusion, the present study demonstrates that melatonin is capable of reversing MTX-induced intestinal dysfunctions, indicating that it may be beneficial in ameliorating the symptoms of chemotherapy-induced enteritis.
Acute renal failure is a major complication of gentamicin (GEN), which is widely used in the treatment of gram-negative infections. A large body of in vitro and in vivo evidence indicates that reactive oxygen metabolites (or free radicals) are important mediators of gentamicin nephrotoxicity. In this study we investigated the role of free radicals in gentamicin-induced nephrotoxicity and whether melatonin, a potent antioxidant could prevent it. For this purpose female Sprague-Dawley rats were given intraperitoneally either gentamicin sulphate (40 mg/kg), melatonin (10 mg/kg), gentamicin plus melatonin or vehicle (control) twice daily for 14 days. The rats were decapitated on the 15th day and kidneys were removed. Blood urea nitrogen (BUN) and creatinine levels were measured in the blood and malondialdehyde (MDA) and glutathione (GSH) levels, protein oxidation (PO) and myeloperoxidase (MPO) activity were determined in the renal tissue. Gentamicin was observed to cause a severe nephrotoxicity which was evidenced by an elevation of BUN and creatinine levels. The significant decrease in GSH and increases in MDA levels, PO and MPO activity indicated that GEN-induced tissue injury was mediated through oxidative reactions. On the other hand simultaneous melatonin administration protected kidney tissue against the oxidative damage and the nephrotoxic effect caused by GEN treatment.
Purpose In the critically ill, hospital-acquired bloodstream infections (HA-BSI) are associated with significant mortality. Granular data are required for optimizing management, and developing guidelines and clinical trials. Methods We carried out a prospective international cohort study of adult patients (≥ 18 years of age) with HA-BSI treated in intensive care units (ICUs) between June 2019 and February 2021. Results 2600 patients from 333 ICUs in 52 countries were included. 78% HA-BSI were ICU-acquired. Median Sequential Organ Failure Assessment (SOFA) score was 8 [IQR 5; 11] at HA-BSI diagnosis. Most frequent sources of infection included pneumonia (26.7%) and intravascular catheters (26.4%). Most frequent pathogens were Gram-negative bacteria (59.0%), predominantly Klebsiella spp. (27.9%), Acinetobacter spp . (20.3%), Escherichia coli (15.8%), and Pseudomonas spp . (14.3%). Carbapenem resistance was present in 37.8%, 84.6%, 7.4%, and 33.2%, respectively. Difficult-to-treat resistance (DTR) was present in 23.5% and pan-drug resistance in 1.5%. Antimicrobial therapy was deemed adequate within 24 h for 51.5%. Antimicrobial resistance was associated with longer delays to adequate antimicrobial therapy. Source control was needed in 52.5% but not achieved in 18.2%. Mortality was 37.1%, and only 16.1% had been discharged alive from hospital by day-28. Conclusions HA-BSI was frequently caused by Gram-negative, carbapenem-resistant and DTR pathogens. Antimicrobial resistance led to delays in adequate antimicrobial therapy. Mortality was high, and at day-28 only a minority of the patients were discharged alive from the hospital. Prevention of antimicrobial resistance and focusing on adequate antimicrobial therapy and source control are important to optimize patient management and outcomes. Supplementary Information The online version contains supplementary material available at 10.1007/s00134-022-06944-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.