Summary Ciliary microtubules (MTs) are extensively decorated with post-translational modifications (PTMs), such as glutamylation of tubulin tails. PTMs and tubulin isotype diversity act as a “Tubulin Code” that regulates cytoskeletal stability and the activity of MT-associated proteins such as kinesins. We previously showed that, in C. elegans cilia, the deglutamylase CCPP-1 affects ciliary ultrastructure, localization of the TRP channel PKD-2 and the kinesin-3 KLP-6, and velocity of kinesin-2 OSM-3/KIF17, while a cell-specific α-tubulin isotype regulates ciliary ultrastructure, intraflagellar transport, and ciliary functions of extracellular vesicle (EV)-releasing neurons. Here, we examine the role of PTMs and the Tubulin Code in the cililary specialization of EV-releasing neurons using genetics, fluorescence microscopy, kymography, electron microscopy, and sensory behavioral assays. Although the C. elegans genome encodes five tubulin tyrosine ligase-like (TTLL) glutamylases, only ttll-11 specifically regulates PKD-2 localization in EV-releasing neurons. In EV-releasing cephalic male (CEM) cilia, TTLL-11 and the deglutamylase CCPP-1 regulate remodeling of 9+0 MT doublets into 18 singlet MTs. Balanced TTLL-11 and CCPP-1 activity fine-tunes glutamylation to control velocity of kinesin-2 OSM-3/KIF17 and kinesin-3 KLP-6 without affecting the IFT kinesin-II. TTLL-11 is transported by ciliary motors. TTLL-11 and CCPP-1 are also required for the ciliary function of releasing bioactive EVs, and TTLL-11 is itself a novel EV cargo. Therefore, MT glutamylation, as part of the tubulin code, controls ciliary specialization, ciliary motor-based transport, and ciliary EV release in a living animal. We suggest that cell-specific control of MT glutamylation may be a conserved mechanism to specialize the form and function of cilia.
Many neuronal identity regulators are expressed in distinct populations of cells in the nervous system, but their function is often analyzed only in specific isolated cellular contexts, thereby potentially leaving overarching themes in gene function undiscovered. We show here that the Caenorhabditis elegans Prop1-like homeobox gene unc-42 is expressed in 15 distinct sensory, inter- and motor neuron classes throughout the entire C. elegans nervous system. Strikingly, all 15 neuron classes expressing unc-42 are synaptically interconnected, prompting us to investigate whether unc-42 controls the functional properties of this circuit and perhaps also the assembly of these neurons into functional circuitry. We found that unc-42 defines the routes of communication between these interconnected neurons by controlling the expression of neurotransmitter pathway genes, neurotransmitter receptors, neuropeptides, and neuropeptide receptors. Anatomical analysis of unc-42 mutant animals reveals defects in axon pathfinding and synaptic connectivity, paralleled by expression defects of molecules involved in axon pathfinding, cell-cell recognition, and synaptic connectivity. We conclude that unc-42 establishes functional circuitry by acting as a terminal selector of functionally connected neuron types. We identify a number of additional transcription factors that are also expressed in synaptically connected neurons and propose that terminal selectors may also function as ‘circuit organizer transcription factors’ to control the assembly of functional circuitry throughout the nervous system. We hypothesize that such organizational properties of transcription factors may be reflective of not only ontogenetic, but perhaps also phylogenetic trajectories of neuronal circuit establishment.
Ciliary microtubules are subject to post-translational modifications that act as a “Tubulin Code” to regulate motor traffic, binding proteins and stability. In humans, loss of CCP1, a cytosolic carboxypeptidase and tubulin deglutamylating enzyme, causes infantile-onset neurodegeneration. In C . elegans , mutations in ccpp-1 , the homolog of CCP1, result in progressive degeneration of neuronal cilia and loss of neuronal function. To identify genes that regulate microtubule glutamylation and ciliary integrity, we performed a forward genetic screen for suppressors of ciliary degeneration in ccpp-1 mutants. We isolated the ttll-5(my38) suppressor, a mutation in a tubulin tyrosine ligase-like glutamylase gene. We show that mutation in the ttll-4 , ttll-5 , or ttll-11 gene suppressed the hyperglutamylation-induced loss of ciliary dye filling and kinesin-2 mislocalization in ccpp-1 cilia. We also identified the nekl-4(my31) suppressor, an allele affecting the NIMA (Never in Mitosis A)-related kinase NEKL-4/NEK10. In humans, NEK10 mutation causes bronchiectasis, an airway and mucociliary transport disorder caused by defective motile cilia. C . elegans NEKL-4 localizes to the ciliary base but does not localize to cilia, suggesting an indirect role in ciliary processes. This work defines a pathway in which glutamylation, a component of the Tubulin Code, is written by TTLL-4, TTLL-5, and TTLL-11; is erased by CCPP-1; is read by ciliary kinesins; and its downstream effects are modulated by NEKL-4 activity. Identification of regulators of microtubule glutamylation in diverse cellular contexts is important to the development of effective therapies for disorders characterized by changes in microtubule glutamylation. By identifying C . elegans genes important for neuronal and ciliary stability, our work may inform research into the roles of the tubulin code in human ciliopathies and neurodegenerative diseases.
Homeobox genes are prominent regulators of neuronal identity, but the extent to which their function has been probed in animal nervous systems remains limited. In the nematode Caenorhabditis elegans, each individual neuron class is defined by the expression of unique combinations of homeobox genes, prompting the question of whether each neuron class indeed requires a homeobox gene for its proper identity specification. We present here progress in addressing this question by extending previous mutant analysis of homeobox gene family members and describing multiple examples of homeobox gene function in different parts of the C. elegans nervous system. To probe homeobox function, we make use of a number of reporter gene tools, including a novel multicolor reporter transgene, NeuroPAL, which permits simultaneous monitoring of the execution of multiple differentiation programs throughout the entire nervous system. Using these tools, we add to the previous characterization of homeobox gene function by identifying neuronal differentiation defects for 14 homeobox genes in 24 distinct neuron classes that are mostly unrelated by location, function and lineage history. 12 of these 24 neuron classes had no homeobox gene function ascribed to them before, while in the other 12 neuron classes, we extend the combinatorial code of transcription factors required for specifying terminal differentiation programs. Furthermore, we demonstrate that in a particular lineage, homeotic identity transformations occur upon loss of a homeobox gene and we show that these transformations are the result of changes in homeobox codes. Combining the present with past analyses, 113 of the 118 neuron classes of C. elegans are now known to require a homeobox gene for proper execution of terminal differentiation programs. Such broad deployment indicates that homeobox function in neuronal identity specification may be an ancestral feature of animal nervous systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.