The generation of highly reactive singlet oxygen (1O2) is of major importance for a variety of applications such as photodynamic therapy (PDT) for cancer treatment, water treatment, catalytic oxidation, and others. Herein, we demonstrate that 1O2 can be efficiently produced through the direct photosensitization by Au25(SR)18 – clusters (H−SR = phenylethanethiol or captopril) without using conventional organic photosensitizers under visible/near-IR (532, 650, and 808 nm) irradiation. 1O2 was successfully detected by direct observation of the characteristic 1O2 emission around 1276 nm as well as three different 1O2-selective probes. Water-soluble Au25(captopril)18 – clusters were explored for cytocompatibility and photodynamic activity toward cancer cells. In addition, selective catalytic oxidation of organic sulfide to sulfoxide by 1O2 was demonstrated on the photoexcited Au25(SC2H4Ph)18 – clusters. It is suggested that the optical gap of Au25(SR)18 clusters (∼1.3 eV) being larger than the energy of 1O2 (0.97 eV) allows for the efficient energy transfer to 3O2. In addition, the long lifetime of the electronic excited states of Au25(SR)18 and the well-defined O2 adsorption sites are the key factors that promote energy transfer from Au25(SR)18 – to molecular oxygen, thus facilitating the formation of 1O2. Finally, neutral Au25(SR)18 0 can also produce 1O2 as efficiently as does the anionic Au25(SR)18 −.
The amount of plasma protein adsorbed on a phospholipid polymer having a 2-methacryloyloxyethyl phosphorylcholine (MPC) moiety was reduced compared to the amount of protein adsorbed onto poly[2-hydroxyethyl methacrylate (HEMA)], poly[n-butyl methacrylate (BMA)], and BMA copolymers with acrylamide (AAm) or N-vinyl pyrrolidone (VPy) moieties having a hydrophilic fraction. To clarify the reason for the reduced protein adsorption on the MPC polymer, the water structure in the hydrated polymer was examined with attention to the free water fraction. Hydration of the polymers occurred when they were immersed in water. The differential scanning calorimetric analysis of these hydrated polymers revealed that the free water fractions in the poly(MPC-co-BMA) and poly(MPC-co-n-dodecyl methacrylate) with a 0.30 MPC mole fraction were above 0.70. On the other hand, the free water fractions in the poly(HEMA), poly(AAm-co-BMA), and poly(VPy-co-BMA) were below 0.42. The conformational change in proteins adsorbed on the MPC polymers and poly(HEMA) were determined using ultraviolet and circular dichroism spectroscopic measurements. Proteins adsorbed on poly(HEMA) changed considerably, but those adsorbed on poly(MPC-co-BMA) with a 0.30 MPC mole fraction differed little from the native state. We concluded from these results that fewer proteins are adsorbed and their original conformation is not changed on polymer surfaces that possess a high free water fraction.
Inkjet printers are capable of printing at high resolution by ejecting extremely small ink drops. Established printing technology will be able to seed living cells, at micrometer resolution, in arrangements similar to biological tissues. We describe the use of a biocompatible inkjet head and our investigation of the feasibility of microseeding with living cells. Living cells are easily damaged by heat; therefore, we used an electrostatically driven inkjet system that was able to eject ink without generating significant heat. Bovine vascular endothelial cells were prepared and suspended in culture medium, and the cell suspension was used as "ink" and ejected onto culture disks. Microscopic observation showed that the endothelial cells were situated in the ejected dots in the medium, and that the number of cells in each dot was dependent on the concentration of the cell suspension and ejection frequency chosen. After the ejected cells were incubated for a few hours, they adhered to the culture disks. Using our non-heat-generating, electrostatically driven inkjet system, living cells were safely ejected onto culture disks. This microseeding technique with living cells has the potential to advance the field of tissue engineering.
To better understand protein/material and cell/material interactions at the submolecular level, well-defined polymer brushes consisting of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) on silicon wafers were prepared by atom transfer radical polymerization (ATRP). Silicon wafers were treated with 3-(2-bromoisobutyryl)propyl dimethylchlorosilane (BDCS) to form a monolayer that acts as initiators for ATRP. Silicon-supported BDCS monolayers were soaked in a methanol/water mixture solution containing Cu(I)Br, bipyridine, and a sacrificial initiator. After MPC was added to the solution, ATRP was carried out for 18 h. The molecular weight and thickness of the PMPC brush layer on the silicon surface increased with an increase in the polymerization time. The dense polymer brushes were obtained by the "grafting from" system. By selective decomposition of the BDCS monolayer by UV light-irradiation, the PMPC brush region and the sizes were well controlled, resulting in fabricating micropatterns of the PMPC brushes. When the thickness of the PMPC brush layer was greater than 5.5 +/- 1.0 nm (3 h polymerization), serum protein adsorption and fibroblast adhesion were effectively reduced, i.e., proteins and cells could recognize such thin polymer brushes on the surface. In addition, the density of the adherent cells on the patterned PMPC brush surface could be controlled by changing the size of the pattern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.