Renin plays a key role in controlling blood pressure through its specific cleavage of angiotensinogen to generate angiotensin I (AI). Although possible existence of the other angiotensin forming enzymes has been discussed to date, its in vivo function remains to be elucidated. To address the contribution of renin, we generated renin knockout mice. Homozygous mutant mice show neither detectable levels of plasma renin activity nor plasma AI, lowered blood pressure 20 -30 mm Hg less than normal, increased urine and drinking volume, and altered renal morphology as those observed in angiotensinogen-deficient mice. We recently found the decreased density in granular layer cells of hippocampus and the impaired blood-brain barrier function in angiotensinogen-deficient mice. Surprisingly, however, such brain phenotypes were not observed in renin-deficient mice. Our results demonstrate an indispensable role for renin in the circulating angiotensin generation and in the maintenance of blood pressure, but suggest a dispensable role for renin in the blood-brain barrier function.
A method for the isolation of genomic fragments of RNA virus based on cDNA representational difference analysis (cDNA RDA) was developed. cDNA RDA has been applied for the subtraction of poly(A)+ RNAs but not for poly(A)− RNAs, such as RNA virus genomes, owing to the vast quantity of ribosomal RNAs. We constructed primers for inefficient reverse transcription of ribosomal sequences based on the distribution analysis of hexanucleotide patterns in ribosomal RNA. The analysis revealed that distributions of hexanucleotide patterns in ribosomal RNA and virus genome were different. We constructed 96 hexanucleotides (non-ribosomal hexanucleotides) and used them as mixed primers for reverse transcription of cDNA RDA. A synchronous analysis of hexanucleotide patterns in known viral sequences showed that all the known genomic-size viral sequences include non-ribosomal hexanucleotides. In a model experiment, when non-ribosomal hexanucleotides were used as primers, in vitro transcribed plasmid RNA was efficiently reverse transcribed when compared with ribosomal RNA of rat cells. Using non-ribosomal primers, the cDNA fragments of severe acute respiratory syndrome coronavirus and bovine parainfluenza virus 3 were efficiently amplified by subtracting the cDNA amplicons derived from uninfected cells from those that were derived from virus-infected cells. The results suggest that cDNA RDA with non-ribosomal primers can be used for species-independent detection of viruses, including new viruses.
MicroRNAs (miRNAs) are highly conserved small non-coding RNAs that act as post-transcriptional regulators of target mRNA. In this study, we sought to identify the microRNA underlying local inflammation in a murine model of chronic kidney disease (CKD). In microarray analysis of kidneys, the expression of miR-146a/b was elevated in B6.MRLc1 CKD mice that spontaneously develop renal inflammation with age. Primary-microRNA analysis found that elevated miR-146a/b expression in the kidneys of B6.MRLc1 mice was mainly derived from miR-146a rather than miR-146b, and this expression increased with the development of CKD. Histopathological scores for glomerular and interstitial lesions, mRNA expression of inflammatory mediators, and macrophage infiltration were significantly higher in B6.MRLc1 than C57BL/6 mice and were positively correlated with miR-146a expression. In situ hybridization and laser microdissection-RT-PCR showed that miR-146a expression in interstitial lesions containing inflammatory cells was higher than in the glomerulus. The increased expression of the inflammatory-associated genes RELA, IRAK1, IL1B, IL10, and CXCLs was noted in miR-146a/b-silenced human monocytes. The amount of miR-146a was higher in urine sediments of B6.MRLc1 than of C57BL/6 mice. Thus, miR-146a expression in the kidneys and its urinary excretion was specifically associated with the development of interstitial lesions and correlated with inflammatory cell infiltration.
MicroRNAs contribute to the pathogenesis of certain diseases and may serve as biomarkers. We analyzed glomerular microRNA expression in B6.MRLc1, which serve as a mouse model of autoimmune glomerulonephritis. We found that miR-26a was the most abundantly expressed microRNA in the glomerulus of normal C57BL/6 and that its glomerular expression in B6.MRLc1 was significantly lower than that in C57BL/6. In mouse kidneys, podocytes mainly expressed miR-26a, and glomerular miR-26a expression in B6.MRLc1 mice correlated negatively with the urinary albumin levels and podocyte-specific gene expression. Puromycin-induced injury of immortalized mouse podocytes decreased miR-26a expression, perturbed the actin cytoskeleton, and increased the release of exosomes containing miR-26a. Although miR-26a expression increased with differentiation of immortalized mouse podocytes, silencing miR-26a decreased the expression of genes associated with the podocyte differentiation and formation of the cytoskeleton. In particular, the levels of vimentin and actin significantly decreased. In patients with lupus nephritis and IgA nephropathy, glomerular miR-26a levels were significantly lower than those of healthy controls. In B6.MRLc1 and patients with lupus nephritis, miR-26a levels in urinary exosomes were significantly higher compared with those for the respective healthy control. These data indicate that miR-26a regulates podocyte differentiation and cytoskeletal integrity, and its altered levels in glomerulus and urine may serve as a marker of injured podocytes in autoimmune glomerulonephritis.
Ym is one of the chitinase family proteins, which are widely distributed in mammalian bodies and can bind glycosaminoglycans such as heparin/heparan sulfate. Ym1 is a macrophage protein produced in parasitic infections, while its isoform, Ym2, is upregulated in lung under allergic conditions. In the present study, we revealed the distinct cellular expression of Ym1 and Ym2 in normal mice by in situ hybridization and immunohistochemistry. Ym1 was principally expressed in the lung, spleen, and bone marrow, while Ym2 was found in the stomach. Ym1-expressing cells in the lung were alveolar macrophages, and the immunoreactivity for Ym1 was localized in rough endoplasmic reticulum. In the spleen, Ym1-expressing cells gathered in the red pulp and were electron microscopically identified as immature neutrophils. In the bone marrow, immature neutrophils were intensely immunoreactive, but lost this immunoreactivity with maturation. Moreover, needle-shaped crystals in the cytoplasm of macrophages, which formed erythroblastic islands, also showed intense Ym1 immunoreactivity. Ym2 expression was restricted to the stratified squamous epithelium in the junctional region between forestomach and glandular stomach. The function of Ym1 and Ym2 is still unclear; however, the distinct cellular localization under normal conditions suggests their important roles in hematopoiesis, tissue remodeling, or immune responses as an endogenous lectin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.