Animals can be rendered immune to Ascaris parasites by immunization with infectious-stage larvae. The specific parasite gene products that mediate protective responses in ascariasis are unknown. We have identified a cDNA encoding Ascaris suum 14-kDa antigen (As14) and evaluated the vaccinal effect of the Escherichia coli-expressed recombinant protein (rAs14). GenBank analysis showed that As14 has low similarity at the amino acid level to a Caenorhabditis elegans gene product and to antigens of the filarial nematodes but not to other known proteins. In addition, As14 homologues were found to be expressed in human and dog roundworms. In mice that received intranasal administration of rAs14 coupled with cholera toxin B subunit (rAs14-CTB), there was a 64% reduction of recovery of larvae compared with that in the nontreated group. The vaccinated mice showed a significant increase in the total serum immunoglobulin G (IgG) levels and the mucosal IgA responses. Elevation of the rAs14-specific IgE response was also seen. Measurement of the IgG subclasses showed a higher level of IgG1 and a lower level of IgG2a antibody response in the sera of the immunized mice, suggesting that protection was associated with a type II immune response. As14 is the first protective antigen against A. suum infection to be identified. Our immunization trial results in laboratory animals suggest the possibility of developing a mucosal vaccine for parasitic diseases caused by ascarid nematodes.
Protective immunity to the pig roundworm, Ascaris suum, has been demonstrated by immunization of pigs with antigens derived from the parasite's larval stages. We identified a protective antigen commonly expressed in the human and pig Ascaris infections as a 16-kDa protein (As16), which has no similarity at the amino acid level to mammalian proteins but has some similarity to those of the filarial parasites and Caenorhabditis elegans gene product. Localization analysis revealed that the native As16 was highly expressed in the adult worm intestine, hypodermis, and cuticles. In addition, As16 was detected in the parasite excretory and secretory products. Mice intranasally vaccinated with Escherichia coli-expressed recombinant As16 (rAs16), coupled with cholera toxin B subunit, generated a significant increase in the level of rAs16-specific immunoglobulin G (IgG) and IgE in serum. Mucosal IgA levels were also increased. The recombinant protein evoked a mixed (both Th1 and Th2) type of immune response characterized by elevated levels of gamma interferon and interleukin-10 in the culture supernatants of activated spleen cells. An increased level of IgG1 and IgG2a in serum was also observed. The vaccinated mice showed a reduction by 58% in the recovery of challenged larvae compared to a nonvaccinated control. These results suggest the possibility of developing a mucosal vaccine for human and pig ascariasis.
Inorganic pyrophosphatase (PPase) is an important enzyme that catalyzes the hydrolysis of inorganic pyrophosphate (PPi) into ortho‐phosphate (Pi). We report here the molecular cloning and characterization of a gene encoding the soluble PPase of the roundworm Ascaris suum. The predicted A. suum PPase consists of 360 amino acids with a molecular mass of 40.6 kDa and a pI of 7.1. Amino acid sequence alignment and phylogenetic analysis indicates that the gene encodes a functional Family I soluble PPase containing features identical to those of prokaryotic, plant and animal/fungal soluble PPases. The Escherichia coli‐expressed recombinant enzyme has a specific activity of 937 µmol Pi·min−1·mg−1 protein corresponding to a kcat value of 638 s−1 at 55 °C. Its activity was strongly dependent on Mg2+ and was inhibited by Ca2+. Native PPases were expressed in all developmental stages of A. suum. A homolog was also detected in the most closely related human and dog roundworms A. lumbricoides and Toxocara canis, respectively. The enzyme was intensely localized in the body wall, gut epithelium, ovary and uterus of adult female worms. We observed that native PPase activity together with development and molting in vitro of A. suum L3 to L4 were efficiently inhibited in a dose‐dependent manner by imidodiphosphate and sodium fluoride, which are potent inhibitor of both soluble‐ and membrane‐bound H+‐PPases. The studies provide evidence that the PPases are novel enzymes in the roundworm Ascaris, and may have crucial role in the development and molting process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.