BackgroundThe human endometrium undergoes cyclical regeneration throughout a woman's reproductive life. Ectopic implantation of endometrial cells through retrograde menstruation gives rise to endometriotic lesions which affect approximately 10% of reproductive-aged women. The high regenerative capacity of the human endometrium at eutopic and ectopic sites suggests the existence of stem/progenitor cells and a unique angiogenic system. The objective of this study was to isolate and characterize putative endometrial stem/progenitor cells and to address how they might be involved in the physiology of endometrium.Methodology/Principal FindingsWe found that approximately 2% of the total cells obtained from human endometrium displayed a side population (SP) phenotype, as determined by flow cytometric analysis of Hoechst-stained cells. The endometrial SP (ESP) cells exhibited preferential expression of several endothelial cell markers compared to endometrial main population (EMP) cells. A medium specific for endothelial cell culture enabled ESP cells to proliferate and differentiate into various types of endometrial cells, including glandular epithelial, stromal and endothelial cells in vitro, whereas in the same medium, EMP cells differentiated only into stromal cells. Furthermore, ESP cells, but not EMP cells, reconstituted organized endometrial tissue with well-delineated glandular structures when transplanted under the kidney capsule of severely immunodeficient mice. Notably, ESP cells generated endothelial cells that migrated into the mouse kidney parenchyma and formed mature blood vessels. This potential for in vivo angiogenesis and endometrial cell regeneration was more prominent in the ESP fraction than in the EMP fraction, as the latter mainly gave rise to stromal cells in vivo.Conclusions/SignificanceThese results indicate that putative endometrial stem cells are highly enriched in the ESP cells. These unique characteristics suggest that ESP cells might drive physiological endometrial regeneration and be involved in the pathogenesis of endometriosis.
Over the course of pregnancy, the human uterus undergoes a 500-to 1,000-fold increase in volume and a 24-fold increase in weight. The uterine smooth muscle layer or myometrium is remodeled, and both cell hypertrophy and hyperplasia are evident. The origin of the new smooth muscle cells, however, is unclear. They may arise from existing smooth muscle cells, or they may be the product of stem cell differentiation. This study describes a subset of myometrial cells isolated from nonpregnant human myometrium that represents the myometrial stem cell population. This was characterized as side population of myometrial cells (myoSP) by a distinct Hoechst dye efflux pattern. In contrast to the main population of myometrial cells (myoMP), myoSP resided in quiescence, underexpressed or lacked myometrial cell markers, and could proliferate and eventually differentiate into mature myometrial cells in vitro only under low oxygen concentration. Although myoMP displayed mature myometrial phenotypes before and after in vitro cultivation, only myoSP, not myoMP, generated functional human myometrial tissues efficiently when transplanted into the uteri of severely immunodeficient mice. Finally, myoSP were multipotent and made to differentiate into osteocytes and adipocytes in vitro under the appropriate differentiation-inducing conditions. Thus, myoSP exhibited phenotypic and functional characteristics of myometrial stem cells. Study of myoSP will improve the understanding of myometrial physiology and the pathogenesis of myometrium-derived diseases such as leiomyoma. myoSP may also represent a novel source of biological material that could be used in the reconstruction of not only the human uterus but also other organs as well.pregnancy ͉ uterus ͉ hypoxia ͉ oxytocin receptor ͉ ATP-binding cassette transporter T he human uterus, which is composed mainly of myometrial cells, exhibits a 20-fold expansion in size over the course of pregnancy. Both myometrial hyperplasia (an increase in cell number) and hypertrophy (an increase in cell size) contribute to the dramatic growth of the pregnant uterus (1, 2). In humans, most growth results from stretch-induced myometrial hypertrophy. Uterine growth during the first weeks of pregnancy, however, is accomplished by myometrial hyperplasia with a smaller contribution from hypertrophy (1). Similarly in rats, myometrial hyperplasia is high during early gestation and decreases dramatically later; and myometrial hypertrophy is low at the beginning of pregnancy but increases as gestation progresses (2). These changes repeat with each successive pregnancy. The presence of stem cells in other areas of the body that undergo continual renewal such as the bone marrow, gut, and skeletal muscle (3) suggests that the changes in the uterus may not be attributable to the hypertrophy and hyperplasia of existing myometrial cells alone. We hypothesize that the myometrium harbors a population of stem cells that enable the repeatable enlargement of the pregnant uterus. In support of this hypothesis we isolated putat...
Key Words: cardiomyogenesis Ⅲ human mesenchymal stem cell Ⅲ immunologic tolerance Ⅲ myocardial infarction Ⅲ cell-based therapy A lthough embryonic stem cells 1 and induced pluripotent stem (iPS) cells 2 can be differentiated into cells of various organs, including cardiomyocytes, there are many underlining problems to overcome before clinical applications can be used, eg, tumorigenicity. 3 Autografts of iPS cells may not cause immunologic rejection; ironically, however, possible neoplasm formation would cause a serious problem because the neoplasm would not be rejected by the withdrawal of immunosuppressive agents. On the other hand, mesenchymal stem cells (MSCs) have recently been used for clinical application, and their safety and feasibility in cardiac stem cell-based therapy have been demonstrated. 4 Thus, MSCs are a more important cellular source for stem cell-based therapy from a practical point of view.The efficacy of human bone marrow-derived MSCs (BMMSCs) was still limited, 5 however, because of low efficiency for cardiomyogenic transdifferentiation. 6 We previously reported that non-marrow-derived mesenchymal cells had higher cardiomyogenic transdifferentiation efficiency, eg, menstrual blood-derived mesenchymal cells (MMCs), 7 umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), 8 and placental chorionic plate-derived mesenchymal cells (PCPCs). 9 These cells are thought to be used by an allograft; therefore, problems of immunologic rejection arise. However, an allograft may be superior to an autograft in several ways. Taking into account the background condition of the patient (eg, metabolic disease or age), Original received July 16, 2009; revision received April 14, 2010; accepted April 22, 2010 16 reported significant recovery of cardiac function by the rat amnion-derived cell transplantation in rat myocardial infarction (MI) model, however, they failed to show clear evidence of cardiomyogenic differentiation in vivo. Therefore, in the present study, we attempted to show: (1) the powerful cardiomyogenic transdifferentiation potential of our isolated hAMCs, and the beneficial effect of transplantation of hAMCs on cardiac function in vivo; (2) the induction of immunologic tolerance so that hAMCs can be a powerful allograftable stem cell source without either the administration of immunosuppressive agents or matching of MHC typing; (3) the mechanism of induction of tolerance; and (4) the close relationship between the cardiomyogenic transdifferentiation of mesenchymal cells and the process of immunologic tolerance. MethodsAn expanded Methods section is available in the Online Data Supplement at http://circres.ahajournals.org. Isolation and Culture of Human Amniotic Membrane-Derived Mesenchymal CellsHuman amniotic membrane was collected, with informed consent from individual patients, after delivery of a male neonate. The study was approved by the ethics committee of Keio University School of Medicine. The precise methods for culture have been described previously. 9,17 Detail is shown in...
Human uterine endometrium exhibits unique properties of cyclical regeneration and remodeling throughout reproductive life and also is subject to endometriosis through ectopic implantation of retrogradely shed endometrial fragments during menstruation. Here we show that functional endometrium can be regenerated from singly dispersed human endometrial cells transplanted beneath the kidney capsule of NOD/SCID/␥ c null immunodeficient mice. In addition to the endometrium-like structure, hormonedependent changes, including proliferation, differentiation, and tissue breakdown and shedding (menstruation), can be reproduced in the reconstructed endometrium, the blood to which is supplied predominantly by human vessels invading into the mouse kidney parenchyma. Furthermore, the hormone-dependent behavior of the endometrium regenerated from lentivirally engineered endometrial cells expressing a variant luciferase can be assessed noninvasively and quantitatively by in vivo bioluminescence imaging. These results indicate that singly dispersed endometrial cells have potential applications for tissue reconstitution, angiogenesis, and human-mouse chimeric vessel formation, providing implications for mechanisms underlying the physiological endometrial regeneration during the menstrual cycle and the establishment of endometriotic lesions. This animal system can be applied as the unique model of endometriosis or for other various types of neoplastic diseases with the capacity of noninvasive and real-time evaluation of the effect of therapeutic agents and gene targeting when the relevant cells are transplanted beneath the kidney capsule.animal model ͉ bioluminescence imaging ͉ endometriosis ͉ menstruation ͉ angiogenesis H uman endometrium lines the uterus and comprises luminal and glandular epithelial cells, stromal fibroblasts, vascular smooth muscle cells, endothelial cells, and immune competent cells. These cell components coordinately participate in the cyclical changes of human endometrium, including proliferation, differentiation, and tissue breakdown and shedding under the influence of estrogen and progesterone during the menstrual cycle. This unique system of cyclic tissue regeneration also depends on the cyclical growth and regression of the blood vessels that supply the endometrium (1). In addition, angiogenesis is deeply involved in the pathogenesis of endometriumderived disorders such as endometriosis (2). Endometriosis, one of the most common gynecological diseases, is characterized by the presence of functional endometrial-like tissue outside the uterine cavity. It is an estrogen-dependent disorder associated with substantial morbidity; however, the etiology and pathophysiology are not well elucidated (3). To study the physiology of normal endometrium and the pathogenesis of endometriosis, a variety of in vivo models using small animals has been developed by using the transplantation of autologous or heterologous endometrial cells/tissues or endometriotic tissues (4).In the present study, taking advantage of newly de...
A higher frequency of uterine peristalsis during the mid-luteal phase might be one of the causes of infertility associated with intramural-type fibroids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.