Objective-The delivery of autologous progenitor cells into ischemic tissue of patients is emerging as a novel therapeutic option. Here, we report the potential impact of cultured adipose tissue-derived cells (ADSC) on angiogenic cell therapy. Method and Results-ADSC were isolated from C57Bl/6 mouse inguinal adipose tissue and showed high expression of ScaI and CD44, but not c-kit, Lin, CD34, CD45, CD11b, and CD31, compatible with that of mesenchymal stem cells from bone marrow. In coculture conditions with ADSC and human aortic endothelial cells (ECs) under treatment with growth factors, ADSC significantly increased EC viability, migration and tube formation mainly through secretion of vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF). At 4 weeks after transplantation of ADSC into the ischemic mouse hindlimb, the angiogenic scores were improved in the ADSC-treated group, which were evaluated with blood flow by laser Doppler imaging (LDI) and capillary density by immunostaining with anti-CD31 antibody. However, injected ADSC did not correspond to CD31, von Willebrand factor, and ␣-smooth muscle actin-positive cells in ischemic tissue. Conclusion-These
Adult stem cells hold great promise for use in tissue repair and regeneration, and the delivery of autologous progenitor cells into ischemic tissue is emerging as a novel therapeutic option. We and others have recently demonstrated the potential impact of adipose tissue-derived stromal cells (ADSC) on regenerative cell therapy for ischemic diseases. The main benefit of ADSC is that they can be easily harvested from patients by a simple, minimally invasive method and also easily cultured. Cultured ADSC can be induced to differentiate into not only adipocytes, but also bone, neurons or endothelial cells in certain conditions. Interestingly, they secrete a number of angiogenesis-related cytokines, such as vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF), which might be suitable for regenerative cell therapy for ischemic diseases. In the ischemic mouse hindlimb, the angiogenic score was improved in the ADSC-treated group. Moreover, recent reports demonstrated that these ADSC can also be induced to differentiate into cardiac myocytes. These adipose tissuederived cells have potential in angiogenic cell therapy for ischemic disease, and might be applied for regenerative cell therapy instead of bone marrow cells in the near future.
The role of bone marrow cells in repairing ectodermal tissue, such as skin epidermis, is not clear. To explore this process further, this study examined a particular form of cutaneous repair, skin grafting. Grafting of full thickness wild-type mouse skin onto mice that had received a green fluorescent protein-bone marrow transplant after whole body irradiation led to an abundance of bone marrow-derived epithelial cells in follicular and interfollicular epidermis that persisted for at least 5 mo. The source of the epithelial progenitors was the nonhematopoietic, platelet-derived growth factor receptor α-positive (Lin − /PDGFRα + ) bone marrow cell population. Skin grafts release high mobility group box 1 (HMGB1) in vitro and in vivo, which can mobilize the Lin − /PDGFRα + cells from bone marrow to target the engrafted skin. These data provide unique insight into how skin grafts facilitate tissue repair and identify strategies germane to regenerative medicine for skin and, perhaps, other ectodermal defects or diseases.
Bacterial attachment and growth on material surfaces are considered to be the primary steps leading to the formation of biofilm. Biofilms in hospital and food processing settings can result in bacterial infection and food contamination, respectively. Prevention of bacterial attachment, therefore, is considered to be the best strategy for abating these menaces and therefore the development of antibacterial metals becomes important. In this study, nine pure metals, viz. titanium, cobalt, nickel, copper, zinc, zirconium, molybdenum, tin, and lead have been tested for their antibacterial properties against two bacterial strains, Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. This was accomplished using two assay methods, the film contact method and the shaking flask method. The results show that the antibacterial properties varied significantly with different metals and the effectiveness of metals to resist bacterial attachment varied with the bacterial strain. Among the metals tested, titanium and tin did not exhibit antibacterial properties. TEM images showed that metal accumulation resulted in the disruption of the bacterial cell wall and other cellular components.
Recent studies have shown that skin injury recruits bone marrow-derived fibroblasts (BMDFs) to the site of injury to accelerate tissue repair. However, whether uninjured skin can recruit BMDFs to maintain skin homeostasis remains uncertain. Here, we investigated the appearance of BMDFs in normal mouse skin after embryonic bone marrow cell transplantation (E-BMT) with green fluorescent proteintransgenic bone marrow cells (GFP-BMCs) via the vitelline vein, which traverses the uterine wall and is connected to the fetal circulation. At 12 weeks of age, mice treated with E-BMT were observed to have successful engraftment of GFP-BMCs in hematopoietic tissues accompanied by induction of immune tolerance against GFP. We then investigated BMDFs in the skin of the same mice without prior injury and found that a significant number of BMDFs, which generate matrix proteins both in vitro and in vivo, were recruited and maintained after birth. Next, we performed E-BMT in a dystrophic epidermolysis bullosa mouse model (col7a1 ؊/؊ ) lacking type VII collagen in the cutaneous basement membrane zone. E-BMT significantly ameliorated the severity of the dystrophic epidermolysis bullosa phenotype in neonatal mice. Type VII collagen was deposited primarily in the follicular basement membrane zone in the vicinity of the BMDFs. Thus, gene therapy using E-BMT into the fetal circulation may offer a potential treatment option to ameliorate genetic skin diseases that are characterized by fibroblast dysfunction through the introduction of immune-tolerated BMDFs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.