Abstract-The expression pattern of angiotensin (Ang) II type 2 receptor (AT 2 -R) in the remodeling process of human left ventricles (LVs) remains poorly defined. We analyzed its expression at protein, mRNA, and cellular levels using autopsy, biopsy, or operation LV samples from patients with failing hearts caused by acute (AMI) or old (OMI) myocardial infarction and idiopathic dilated cardiomyopathy (DCM) and also examined functional biochemical responses of failing hearts to Ang II. In autopsy samples from the nonfailing heart group, the ratio of AT 1 -R and AT 2 -R was 59% and 41%, respectively. The expression of AT 2 -R was markedly increased in DCM hearts at protein (3.5-fold) and mRNA (3.1-fold) levels compared with AMI or OMI. AT 1 -R protein and mRNA levels in AMI hearts showed 1.5-and 2.1-fold increases, respectively, whereas in OMI and DCM hearts, AT 1 -R expression was significantly downregulated. AT 1 -R-mediated response in inositol phosphate production was significantly attenuated in LV homogenate from failing hearts compared with nonfailing hearts. AT 2 -R sites were highly localized in the interstitial region in either nonfailing or failing heart, whereas AT 1 -R was evenly distributed over myocardium at lower densities. Mitogen-activated protein kinase (MAPK) activation by Ang II was significantly decreased in fibroblast compartment from the failing hearts, and pretreatment with AT 2 -R antagonist caused an additional significant increase in Ang II-induced MAPK activity (36%). Cardiac hypertrophy suggested by atrial and brain natriuretic peptide levels was comparably increased in OMI and DCM, whereas accumulation of matrix proteins such as collagen type 1 and fibronectin was much more prominent in DCM than in OMI. These findings demonstrate that (1) AT 2 -R expression is upregulated in failing hearts, and fibroblasts present in the interstitial regions are the major cell type responsible for its expression, (2) AT 2 -R present in the fibroblasts exerts an inhibitory effect on Ang II-induced mitogen signals, and (3) AT 1 -R in atrial and LV tissues was downregulated during chronic heart failure, and AT 1 -R-mediated functional biochemical responsiveness was decreased in the failing hearts. Thus, the expression level of AT 2 -R is likely determined by the extent of interstitial fibrosis associated with heart failure, and the expression and function of AT 1 -R and AT 2 -R are differentially regulated in failing human hearts. (Circ Res. 1998;83:1035-1046.)Key Words: angiotensin II type 2 receptor Ⅲ AT 2 receptor Ⅲ angiotensin II type 1 receptor Ⅲ AT 1 receptor, angiotensin II T he presence of 2 isoforms of angiotensin (Ang) II receptor was originally proposed on the basis of differences in sensitivity of receptor-ligand binding to dithiothreitol. Ang type 2 receptor (AT 2 -R), which is insensitive to dithiothreitol and has a high affinity for PD123319 and CGP42112A, was isolated, and this receptor was shown to have the same seventransmembrane domain of AT 1 -R but only minimal homology (see Review i...
The signaling cascade elicited by angiotensin II (Ang II) resembles that characteristic of growth factor stimulation, and recent evidence suggests that G protein-coupled receptors transactivate growth factor receptors to transmit mitogenic effects. In the present study, we report the involvement of epidermal growth factor receptor (EGF-R) in Ang II-induced extracellular signal-regulated kinase (ERK) activation, c-fos gene expression, and DNA synthesis in cardiac fibroblasts. Ang II induced a rapid tyrosine phosphorylation of EGF-R in association with phosphorylation of Shc protein and ERK activation. Specific inhibition of EGF-R function by either a dominant-negative EGF-R mutant or selective tyrphostin AG1478 completely abolished Ang II-induced ERK activation. Induction of c-fos gene expression and DNA synthesis were also abolished by the inhibition of EGF-R function. Calmodulin or tyrosine kinase inhibitors, but not protein kinase C (PKC) inhibitors or downregulation of PKC, completely abolished transactivation of EGF-R by Ang II or the Ca2+ ionophore A23187. Epidermal growth factor (EGF) activity in concentrated supernatant from Ang II-treated cells was not detected, and saturation of culture media with anti-EGF antibody did not affect the Ang II-induced transactivation of EGF-R. Conditioned media in which cells were incubated with Ang II could not induce phosphorylation of EGF-R on recipient cells. Platelet-derived growth factor-beta receptor was not phosphorylated on Ang II stimulation, and Ang II-induced c-jun gene expression was not affected by tyrphostin AG1478. Our results demonstrated that in cardiac fibroblasts Ang II-induced ERK activation and its mitogenic signals are dominantly mediated by EGF-R transactivated in a Ca2+/calmodulin-dependent manner and suggested that the effects of Ang II on cardiac fibroblasts should be interpreted in association with the signaling pathways regulating cellular proliferation and/or differentiation by growth factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.