The mode of action of tetrodotoxin on the frog muscle fiber membrane has been analyzed with the aid of intracellular microelectrodes. Tetrodotoxin of 10–7 concentration made the applied cathodal current ineffective in producing action potential, whereas the resting potential and resting membrane resistance underwent little or no change. With 10–8 tetrodotoxin the muscle fibers responded with the small action potentials at high critical depolarizations. These results can be explained on the basis of the membrane being stabilized by inactivation of the sodium-carrying mechanism. Although delayed rectification was not observed in normal muscle fibers, it became apparent in the fibers rendered inexcitable by tetrodotoxin. This finding, together with other evidence in the existing literature, supports an applicability of the sodium theory to the frog muscle fibers.
Yuzu ( Citrus junos Sieb. ex Tanaka), a tree-grown fruit similar to a kind of sour orange, is widely used in Japanese food/cooking for its pleasant flavor. To clarify the odor-active volatiles that differentiate yuzu from other citrus fruits, sensory evaluations were conducted on yuzu peel oil. The results revealed that the polar part of yuzu peel oil was the source of the characteristic aroma of fresh yuzu fruit. By aroma extract dilution analysis (AEDA) of the polar volatile part of yuzu peel oil, seven odorants were newly identified as odor-active volatiles in yuzu peel oil in the highest flavor dilution (FD) factors of 128 and 32: oct-1-en-3-one, (E)-non-4-enal, (E)-dec-4-enal, 4-methyl-4-mercaptopentan-2-one, (E)-non-6-enal, (6Z,8E)-undeca-6,8,10-trien-3-one (Yuzunone), and (6Z,8E)-undeca-6,8,10-trien-4-ol (Yuzuol). Among the most odor-active volatiles in yuzu, (E)-non-6-enal and Yuzunone were identified for the first time solely in yuzu peel oil and not in the peel of other citrus species, and Yuzuol was identified for the first time in nature. Sensory evaluation of yuzu aroma reconstitutions revealed that the newly identified compound, Yuzunone, contributes greatly to the distinct yuzu aroma.
Pheromone signals regulate conspecific behavior and physiology [1]. Releaser pheromones induce specific behavior by exerting acute effects on the neuronal response, whereas primer pheromones induce physiological changes with long-lasting effects by changing the neuroendocrine status of the recipients. In mammals, although several types of releaser pheromones have been identified [2-5], the identities of primer pheromones, as well as their mechanisms of action, remain largely unknown [6]. In sheep and goats, the seasonally anestrous endocrine state of females is changed to the estrous state upon exposure to male scents [7, 8]. This so-called "male effect" is one of the most conspicuous primer pheromone effects in mammals [9, 10]. In this study, we have identified an olfactory signal molecule that activates the central regulator of reproduction, the gonadotropin-releasing hormone (GnRH) pulse generator, in goats. Using gas chromatography-mass spectrometry to analyze male goat headspace volatiles, we identified several ethyl-branched aldehydes and ketones. We electrophysiologically demonstrated that one of these compounds, 4-ethyloctanal, activates the GnRH pulse generator in female goats. This is the first report of an olfactory molecule that has been shown to activate the central reproductive axis, and this discovery will provide a new direction for primer pheromone research.
Galbanum oil is composed of monoterpenes in large amounts and pyrazines in small amounts. Although the monoterpenes are the main components of galbanum oil, they hardly contribute to the distinct galbanum aroma. The scanty amounts of pyrazines, in contrast, contribute significantly to the aroma. Considering the complexity and potency of the odor, the essential oil was assumed to contain so far not identified compounds with high odor contribution. By the gas chromatography-mass spectrometry-olfactometry (GC-MS-O) analysis of galbanum oil, fruity-green-balsamic notes were detected at two different retention times. The mass spectra (MS) of the newly discovered notes were elucidated by conducting multidimensional (MD) GC-MS-O. By analyzing the MS data, six chemical structures were proposed: (6E/Z,8E)-undeca-6,8,10-trien-2-one, (6E/Z,8E)-undeca-6,8,10-trien-3-one, and (6E/Z,8E)-undeca-6,8,10-trien-4-one. The compounds were then synthesized in an attempt to match the MS, retention indices (RI), and odor qualities. The MD-GC-MS-O analyses of the candidate compounds led to the identification of the novel key aroma compounds (6Z,8E)-undeca-6,8,10-trien-3-one and (6Z,8E)-undeca-6,8,10-trien-4-one in galbanum oil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.