N-type doping in Si by shallow impurities, such as P, As and Sb, exhibits an intrinsic limit due to the Fermi-level pinning via defect complexes at high doping concentrations. Here we demonstrate that doping Si with the chalcogen Te by non-equilibrium processing, a deep double donor, can exceed this limit and yield higher electron concentrations. In contrast to shallow impurities, both the interstitial Te fraction decreases with increasing doping concentration and substitutional Te dimers become the dominant configuration as effective donors, leading to a non-saturating carrier concentration as well as to an insulator-to-metal transition. First-principle calculations reveal that the Te dimers possess the lowest formation energy and donate two electrons per dimer to the conduction band. These results provide novel insight into physics of deep impurities and lead to a possible solution for the ultra-high electron concentration needed in today's Si-based nanoelectronics. * Corresponding authors,
Chiral magnets endowed with topological spin textures are expected to have promising applications in next‐generation magnetic memories. In contrast to the well‐studied 2D or 3D magnetic skyrmions, the authors report the discovery of 1D nontrivial magnetic solitons in a transition metal dichalcogenide 2H‐TaS2 via precise intercalation of Cr elements. In the synthetic Cr1/3TaS2 (CTS) single crystal, the coupling of the strong spin–orbit interaction from TaS2 and the chiral arrangement of the magnetic Cr ions evoke a robust Dzyaloshinskii–Moriya interaction. A magnetic helix having a short spatial period of ≈25 nm is observed in CTS via Lorentz transmission electron microscopy. In a magnetic field perpendicular to the helical axis, the helical spin structure transforms into a chiral soliton lattice (CSL) with the spin structure evolution being consistent with the chiral sine‐Gordon theory, which opens promising perspectives for the application of CSL to fast‐speed nonvolatile magnetic memories. This work introduces a new paradigm to soliton physics and provides an effective strategy for seeking novel 2D magnets.
Presently, silicon photonics requires photodetectors that are sensitive in a broad infrared range, can operate at room temperature, and are suitable for integration with the existing Si technology process. Here, we demonstrate strong room-temperature sub-bandgap photoresponse of photodiodes based on Si hyperdoped with tellurium. The epitaxially recrystallized Te-hyperdoped Si layers are developed by ion implantation combined with pulsed laser melting and incorporate Te dopant concentrations several orders of magnitude above the solid solubility limit. With increasing Te concentration, the Te-hyperdoped layer changes from insulating to quasi-metallic behavior with a finite conductivity as the temperature tends to zero. The optical absorptance is found to increase monotonically with increasing Te concentration and extends well into the mid-infrared range. Temperaturedependent optoelectronic photoresponse unambiguously demonstrates that the extended infrared photoresponsivity from Te-hyperdoped Si p-n photodiodes is mediated by a Teintermediate band within the upper half of the Si bandgap. This work contributes to pave the way towards establishing a Si-based broadband infrared photonic system operating at room temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.