Multidrug resistance is a significant drawback in malaria treatment, and mutations in the active sites of the many critical antimalarial drug targets have remained challenging. Therefore, this has necessitated the global search for new drugs with new mechanisms of action. Plasmodium falciparum lactate dehydrogenase (pfLHD), a glycolytic enzyme, has emerged as a potential target for developing new drugs due to the parasite reliance on glycolysis for energy. Strong substrate‐binding is required in pfLDH enzymatic catalysis; however, there is a lack of information on small molecules’ inhibitory mechanism bound to the substrate‐binding pocket. Therefore, this study investigated a potential allosteric inhibition of pfLDH by targeting the substrate‐binding site. The structural and functional behaviour of madecassic acid (MA), the most promising among the six triterpenes bound to pfLDH, were unravelled using molecular dynamic simulations at 300 ns to gain insights into its mechanism of binding and inhibition and chloroquine as a standard drug. The docking studies identified that the substrate site has the preferred position for the compounds even in the absence of a co‐factor. The bound ligands showed comparably higher binding affinity at the substrate site than at the co‐factor site. Mechanistically, a characteristic loop implicated in the enzyme catalytic activity was identified at the substrate site. This loop accommodates key interacting residues (LYS174, MET175, LEU177 and LYS179) pivotal in the MA binding and inhibitory action. The MA‐bound pfLHD average RMSD (1.60 Å) relative to chloroquine‐bound pfLHD RMSD (2.00 Å) showed higher stability for the substrate pocket, explaining the higher binding affinity (−33.40 kcal/mol) observed in the energy calculations, indicating that MA exhibited profound inhibitory activity. The significant pfLDH loop conformational changes and the allostery substrate‐binding landscape suggested inhibiting the enzyme function, which provides an avenue for designing antimalarial compounds in the future studies of pfLDH protein as a target.
Background: β-ketoacyl-ACP synthase I (KasA I) enzyme is crucial in mycolic acid synthesis via catalytic condensation reactions, hence implicated in M. tuberculosis’s virulence and drug resistance. Presently, there is no known potent KasA inhibitor; thiolactomycin lacks potency. Recently reported indazole compounds JSF-3285/tr1DG167 and 5G/tr2DG167 inhibit the KasA through binding to the substrate cavity. However, the molecular mechanism is still unclear, and the unknown resistance mechanisms raise concerns about JSF-3285's novelty. Method: This study is the first to report the flap dimer opening and closing of the KasA pocket using combined metrics to define the symmetry impact of the flap-dimer motions and investigate the underlying inhibitory mechanism of tr1DG167 and tr2DG167 using all-atom MD simulation. Results: The distance/d1 between the flap (PRO147) and dimer (LEU205) residues; TriC-α angle (θ1: PRO147-VAL83-LEU205 & θ2: PRO147-GLU199-LEU205); and the dihedral angle (ϕ) were applied to investigate the flap “twisting” and dimer shift closing due to concerted motion by adjacent glycine-rich and glutamic acid-rich loops around the active site during the binding pocket’s opening. The full flap-dimer of the unbound opens at 230 ns (d1 = 21.51 Å), corresponding to the largest TriC-α angle θ1 44.5° as θ2 is unreliable to describe the flap-dimer motion. The overall averages θ1 and θ2 for the bounds were ~23.13° and ~23.31°, respectively. Thus, the degree of KasA flap dimer opening is best investigated by distance and θ1. BFE (Kcal/mol) of -44.05 (tr1DG167) showed a higher affinity for the pocket than tr2DG167-KasA (-32.16). Both tr1DG167 and tr2DG167 formed hydrophobic interactions with LEU116, GLY117, ALA119, and tr1DG167 formed strong H-bonds with GLU199. The average RMSD of 2.80 Å (Apo) and RoG of 20.97 Å showed that KasA is less stable and less tightly packed without the inhibitors. Conclusion: These findings provide a background for a new structure-based design of novel KasA inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.