ObjectiveThe gut microbiota-derived metabolite, trimethylamine N-oxide (TMAO) plays an important role in cardiovascular disease (CVD). The fasting plasma TMAO was shown as a prognostic indicator of CVD incident in patients and raised the interest of intervention targeting gut microbiota. Here we develop a clinically applicable method called oral carnitine challenge test (OCCT) for TMAO-related therapeutic drug efforts assessment and personalising dietary guidance.DesignA pharmacokinetic study was performed to verify the design of OCCT protocol. The OCCT was conducted in 23 vegetarians and 34 omnivores to validate gut microbiota TMAO production capacity. The OCCT survey was integrated with gut microbiome, host genotypes, dietary records and serum biochemistry. A humanised gnotobiotic mice study was performed for translational validation.ResultsThe OCCT showed better efficacy than fasting plasma TMAO to identify TMAO producer phenotype. The omnivores exhibited a 10-fold higher OR to be high TMAO producer than vegetarians. The TMAO-associated taxa found by OCCT in this study were consistent with previous animal studies. The TMAO producer phenotypes were also reproduced in humanised gnotobiotic mice model. Besides, we found the faecal CntA gene was not associated with TMAO production; therefore, other key relevant microbial genes might be involved. Finally, we demonstrated the urine TMAO exhibited a strong positive correlation with plasma TMAO (r=0.92, p<0.0001) and improved the feasibility of OCCT.ConclusionThe OCCT can be used to identify TMAO-producer phenotype of gut microbiota and may serve as a personal guidance in CVD prevention and treatment.Trial registration numberNCT02838732; Results.
Background and aimsBacteroides fragilis (BF) are Gram-negative anaerobe symbionts present in the colon. Recent studies have reported the beneficial role of BF in maintaining intestinal homeostasis, stimulating host immunologic development, and preventing infectious colitis caused by pathogenic bacteria. Our previous studies showed that monocolonization of germ-free mice with BF significantly reduced colon inflammations and damage.MethodsIn order to investigate the Toll-like receptor-2 (TLR2), TLR4, and interleukin 10 (IL-10) molecular signaling pathways involved in BF-mediated prevention of dextran sulfate sodium (DSS)-induced colitis. The wild-type (WT), TLR4, TLR2, and IL-10 knockout (-/-) germ-free mice grown were with or without BF colonization for 28 days, and then administered 1% DSS in drinking water for 7 day to induce acute ulcerative colitis.ResultsWe compared phenotypes such as weight loss, disease activity, intestinal histological scores, and immunohistochemistry for inflammatory cells. Unlike WT and TLR4-/- mice, the severity of DSS-colitis did not improve in TLR2-/- animals after BF colonization. The BF enhanced anti-inflammatory cytokines IL-10 expression and inhibited pro-inflammatory-related tumor necrosis factor (TNF-α) and IL-6 mRNA expression in both WT and TLR4-/- mice. In contrast, the failed to up-regulated IL-10 and down-regulated the TNF-α and IL-6 in BF colonization TLR2-/- mice. In addition, we further perform IL-10-/- mice to clarify whether the BF through TLR2 /IL-10 pathway to alleviate DSS-colitis. There were no significant differences in colitis severity and pro-inflammatory related genes expression in the IL-10-/- mice with or without BF colonization.ConclusionsThese results indicate the disease-preventing effects of BF in acute DSS-induced colitis may occur through the TLR2/IL-10 signal pathway.
Ulcerative colitis is inflammatory conditions of the colon caused by interplay of genetic and environmental factors. Previous studies indicated that the gut microflora may be involved in the colonic inflammation. Bacteroides fragilis (BF) is a Gram-negative anaerobe belonging to the colonic symbiotic. We aimed to investigate the protective role of BF in a colitis model induced in germ-free (GF) mice by dextran sulfate sodium (DSS). GF C57BL/6JNarl mice were colonized with BF for 28 days before acute colitis was induced by DSS. BF colonization significantly increased animal survival by 40%, with less reduction in colon length, and decreased infiltration of inflammatory cells (macrophages and neutrophils) in colon mucosa following challenge with DSS. In addition, BF could enhance the mRNA expression of anti-inflammatory-related cytokine such as interleukin 10 (IL-10) with polymorphism cytokine IL-17 and diminish that of proinflammatory-related tumor necrosis factor α with inducible nitric oxide synthase in the ulcerated colon. Myeloperoxidase activity was also decreased in BF-DSS mice. Taking these together, the BF colonization significantly ameliorated DSS-induced colitis by suppressing the activity of inflammatory-related molecules and inducing the production of anti-inflammatory cytokines. BF may play an important role in maintaining intestinal immune system homeostasis and regulate inflammatory responses.
ABSTRACT. Pseudomonas aeruginosa Exotoxin A (PEA) has been generally used to induce liver injury in mice for experimental study. No PEA-induced hepatotoxicity study has ever been conducted in rats, although rats are the most common rodents used in toxicologic bioassay and pharmacological evaluation. The present study was conducted in male Wistar rats that were injected (i.v.) with PEA at doses of 0, 10, 20, 30 or 40 µg/kg body weight and evaluated at 12, 24, 36, 48 and 60 hr post-exposure (HPE). Rats exposed to PEA at 40 µg/kg died before 36 HPE, and the mortality was dose and time dependent. Liver injury was noted as increases in serum enzymes, along with alterations of liver histology in the 40 µg/kg group at 12 HPE. TUNEL-positive staining indicative of hepatocyte apoptosis was observed in the 20 µg/kg group at 12 HPE. Significant levels of DNA fragmentation ladder were observed in the 30 µg/kg group starting at 24 HPE. Serum levels of TNF-α was increased in the 30 and 40 µg/kg groups at 48 and 24 HPE, respectively. Other cytokines, such as IL-2, IL-6, and IL-10 were also increased at various doses and times. Furthermore, the elevated serum heaptic index levels decreased significantly by dexamethasone pretreatment. In contrast, these markers were exacerbated by co-administration of a non-toxic dose LPS. In overall evaluation, the PEA-induced liver injury can be used as a model for study of hyperimmune-mediated hepatotoxicity.
Atopic dermatitis is a complex chronic inflammatory skin disorder that results from intimate interactions among genetic predisposition, host environment, skin barrier defects, and immunological factors. However, a clear genetic roadmap leading to atopic dermatitis remains to be fully explored. From a genome-wide mutagenesis screen, deficiency of ZDHHC13, a palmitoylacyl transferase, has previously been associated with skin and multitissue inflammatory phenotypes. Here, we report that ZDHHC13 is required for skin barrier integrity and that deficiency of ZDHHC13 renders mice susceptible to environmental bacteria, resulting in persistent skin inflammation and an atopic dermatitis-like disease. This phenotype is ameliorated in a germ-free environment and is also attenuated by antibiotic treatment, but not by deletion of the Rag1 gene, suggesting that a microbial factor triggers inflammation rather than intrinsic adaptive immunity. Furthermore, skin from ZDHHC13-deficient mice has both elevated levels of IL-33 and type 2 innate lymphoid cells, reinforcing the role of innate immunity in the development of atopic dermatitis. In summary, our study suggests that loss of ZDHHC13 in skin impairs the integrity of multiple barrier functions and leads to a dermatitis lesion in response to microbial encounters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.