This study investigated whether melatonin-treated adipose-derived mesenchymal stem cells (ADMSC) offered superior protection against acute lung ischemia-reperfusion (IR) injury. Adult male Sprague-Dawley rats (n = 30) were randomized equally into five groups: sham controls, lung IR-saline, lung IR-melatonin, lung IR-melatonin-normal ADMSC, and lung IR-melatonin-apoptotic ADMSC. Arterial oxygen saturation was lowest in lung IR-saline; lower in lung IR-melatonin than sham controls, lung IR-melatonin-normal ADMSC, and lung IR-melatonin-apoptotic ADMSC; lower in lung IR-melatonin-normal ADMSC than sham controls and lung IR-melatonin-apoptotic ADMSC; lower in lung IR-melatonin-apoptotic ADMSC than sham controls (P < 0.0001 in each case). Right ventricular systolic blood pressure (RVSBP) showed a reversed pattern among all groups (all P < 0.0001). Changes in histological scoring of lung parenchymal damage and CD68+ cells showed a similar pattern compared with RVSBP in all groups (all P < 0.001). Changes in inflammatory protein expressions such as VCAM-1, ICAM-1, oxidative stress, TNF-α, NF-κB, PDGF, and angiotensin II receptor, and changes in apoptotic protein expressions of cleaved caspase 3 and PARP, and mitochondrial Bax, displayed identical patterns compared with RVSBP in all groups (all P < 0.001). Numbers of antioxidant (GR+, GPx+, NQO-1+) and endothelial cell biomarkers (CD31+ and vWF+) were lower in sham controls, lung IR-saline, and lung IR-melatonin than lung IR-melatonin-normal ADMSC and lung IR-melatonin-apoptotic ADMSC, and lower in lung IR-melatonin-normal ADMSC than lung IR-melatonin-apoptotic ADMSC (P < 0.001 in each case). In conclusion, when the animals were treated with melatonin, the apoptotic ADMSC were superior to normal ADMSC for protection of lung from acute IR injury.
BackgroundWe tested whether apoptotic adipose-derived mesenchymal stem cells (A-ADMSCs) were superior to healthy (H)-ADMSCs at attenuating organ damage and mortality in sepsis syndrome following cecal ligation and puncture (CLP).MethodsAdult male rats were categorized into group 1 (sham control), group 2 (CLP), group 3 [CLP + H-ADMSC administered 0.5, 6, and 18 h after CLP], group 4 [CLP + A-ADMSC administered as per group 3].ResultsCirculating peak TNF-α level, at 6 h, was highest in groups 2 and 3, and higher in group 4 than group 1 (p < 0.0001). Immune reactivity (indicated by circulating and splenic helper-, cytoxic-, and regulatory-T cells) at 24 and 72 h exhibited the same pattern as TNF-α amongst the groups (all p < 0.0001). The mononuclear-cell early and late apoptosis level and organ damage parameters of liver (AST, ALT), kidney (creatinine) and lung (arterial oxygen saturation) also displayed a similar pattern to TNF-α levels (all p < 0.001). Protein levels of inflammatory (TNF-α, MMP-9, NF-κB, ICAM-1), oxidative (oxidized protein) and apoptotic (Bax, caspase-3, PARP) biomarkers were higher in groups 2 and 3 than group 1, whereas anti-apoptotic (Bcl-2) biomarker was lower in groups 2 and 3 than in group 1 but anti-oxidant (GR, GPx, HO-1, NQO-1) showed an opposite way of Bcl-2; these patterns were reversed for group 4 (all p < 0.001). Mortality was highest in group 3 and higher in group 2 than group 4 than group 1 (all p < 0.001).ConclusionsA-ADMSC therapy protected major organs from damage and improved prognosis in rats with sepsis syndrome.
We tested the hypothesis that combined melatonin and autologous adipose-derived mesenchymal stem cells (ADMSC) was superior to either alone against small bowel ischemia-reperfusion (SBIR) injury induced by superior mesenteric artery clamping for 30 min followed by reperfusion for 72 hr. Male adult Sprague Dawley rats (n = 50) were equally categorized into sham-operated controls SC, SBIR, SBIR-ADMSC (1.0 × 10(6) intravenous and 1.0 × 10(6) intrajejunal injection), SBIR-melatonin (intraperitoneal 20 mg/kg at 30 min after SI ischemia and 50 mg/kg at 6 and 18 hr after SI reperfusion), and SBIR-ADMSC-melatonin groups. The results demonstrated that the circulating levels of TNF-α, MPO, LyG6+ cells, CD68+ cells, WBC count, and gut permeability were highest in SBIR and lowest in SC, significantly higher in SBIR-ADMSC group and further increased in SBIR-melatonin group than in the combined therapy group (all P < 0.001). The ischemic mucosal damage score, the protein expressions of inflammation (TNF-α, NF-κB, MMP-9, MPO, and iNOS), oxidative stress (NOX-1, NOX-2, and oxidized protein), apoptosis (APAF-1, mitochondrial Bax, cleaved caspase-3 and PARP), mitochondrial damage (cytosolic cytochrome C) and DNA damage (γ-H2AX) markers, as well as cellular expressions of proliferation (PCNA), apoptosis (caspase-3, TUNEL assay), and DNA damage (γ-H2AX) showed an identical pattern, whereas mitochondrial cytochrome C exhibited an opposite pattern compared to that of inflammation among all groups (all P < 0.001). Besides, antioxidant expressions at protein (NQO-1, GR, and GPx) and cellular (HO-1) levels progressively increased from SC to the combined treatment group (all P < 0.001). In conclusion, combined melatonin-ADMSC treatment offered additive beneficial effect against SBIR injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.