SUMMARY
Cancer cells simultaneously harbor global losses and gains in DNA methylation. We demonstrate that inducing cellular oxidative stress by treatment with hydrogen peroxide, recruits DNA methyltransferase 1 (DNMT1) to damaged chromatin. DNMT1 becomes part of a complex(es) containing DNMT3B and members of Polycomb Repressive Complex 4. Hydrogen peroxide treatment causes translocalization of these proteins from non-GC-rich to GC-rich areas. Key components are similarly enriched at gene promoters in an in vivo colitis model. While high expression genes enriched for members of the complex have histone mark and nascent transcription changes, CpG island-containing low expression genes gain promoter DNA methylation. Thus, oxidative damage induces formation and localization of a silencing complex that may explain cancer-specific aberrant DNA methylation and transcriptional silencing.
SUMMARY
Poly (ADP-ribose) polymerase inhibitors (PARPis) are clinically effective predominantly for BRCA-mutant tumors. We introduce a mechanism-based strategy to enhance PARPi efficacy based on DNA damage-related binding between DNA methyltransferases (DNMTs) and PARP1. In AML and breast cancer cells, DNMT inhibitors (DNMTis) alone covalently bind DNMTs into DNA and increase PARP1 tightly bound into chromatin. Low doses of DNMTis plus PARPis, versus each drug alone, increase PARPi efficacy, increasing amplitude and retention of PARP1 directly at laser-induced DNA damage sites. This correlates with increased DNA damage, synergistic tumor cytotoxicity, blunting of self-renewal and strong anti-tumor responses in unfavorable AML subtypes and BRCA wild-type breast cancer cells. Our combinatorial approach introduces a strategy to enhance efficacy of PARPis in treating cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.