We conducted comprehensive integrative molecular analyses of the complete set of tumors in The Cancer Genome Atlas (TCGA), consisting of approximately 10,000 specimens and representing 33 types of cancer. We performed molecular clustering using data on chromosome-arm-level aneuploidy, DNA hypermethylation, mRNA, and miRNA expression levels and reverse-phase protein arrays, of which all, except for aneuploidy, revealed clustering primarily organized by histology, tissue type, or anatomic origin. The influence of cell type was evident in DNA-methylation-based clustering, even after excluding sites with known preexisting tissue-type-specific methylation. Integrative clustering further emphasized the dominant role of cell-of-origin patterns. Molecular similarities among histologically or anatomically related cancer types provide a basis for focused pan-cancer analyses, such as pan-gastrointestinal, pan-gynecological, pan-kidney, and pan-squamous cancers, and those related by stemness features, which in turn may inform strategies for future therapeutic development.
SUMMARY Liver cancer has the second highest worldwide cancer mortality rate and has limited therapeutic options. We analyzed 363 hepatocellular carcinoma (HCC) cases by whole exome sequencing and DNA copy number analyses, and 196 HCC also by DNA methylation, RNA, miRNA, and proteomic expression. DNA sequencing and mutation analysis identified significantly mutated genes including LZTR1, EEF1A1, SF3B1, and SMARCA4. Significant alterations by mutation or down-regulation by hypermethylation in genes likely to result in HCC metabolic reprogramming (ALB, APOB, and CPS1) were observed. Integrative molecular HCC subtyping incorporating unsupervised clustering of five data platforms identified three subtypes, one of which was associated with poorer prognosis in three HCC cohorts. Integrated analyses enabled development of a p53 target gene expression signature correlating with poor survival. Potential therapeutic targets for which inhibitors exist include WNT signaling, MDM4, MET, VEGFA, MCL1, IDH1, TERT, and immune checkpoint proteins CTLA-4, PD-1, and PD-L1.
Previous studies have established that a subset of head and neck tumors contains human papillomavirus (HPV) sequences and that HPV-driven head and neck cancers display distinct biological and clinical features. HPV is known to drive cancer by the actions of the E6 and E7 oncoproteins, but the molecular architecture of HPV infection and its interaction with the host genome in head and neck cancers have not been comprehensively described. We profiled a cohort of 279 head and neck cancers with next generation RNA and DNA sequencing and show that 35 (12.5%) tumors displayed evidence of high-risk HPV types 16, 33, or 35. Twentyfive cases had integration of the viral genome into one or more locations in the human genome with statistical enrichment for genic regions. Integrations had a marked impact on the human genome and were associated with alterations in DNA copy number, mRNA transcript abundance and splicing, and both inter-and intrachromosomal rearrangements. Many of these events involved genes with documented roles in cancer. Cancers with integrated vs. nonintegrated HPV displayed different patterns of DNA methylation and both human and viral gene expressions. Together, these data provide insight into the mechanisms by which HPV interacts with the human genome beyond expression of viral oncoproteins and suggest that specific integration events are an integral component of viral oncogenesis.cancer | head and neck | papilloma virus | genome rearrangement | integration sites H ead and neck cancer (HNC) is a heterogeneous group of tumors characterized by a common anatomic origin, and most such tumors develop from within the mucosa and are classified as head and neck squamous cell carcinomas (HNSCCs) (1). HNSCC, the sixth most common cancer diagnosed worldwide and the eighth most common cause of cancer death (2), is frequently associated with human papillomavirus (HPV) infection (3, 4). Depending on the anatomic site of the tumor, HPV prevalence is estimated at 23-36% (5). HPV-positive HNSCCs form a distinct subset of HNCs that differs from HPV-negative HNSCCs in tumor biology and clinical characteristics, including superior clinical outcomes (6-9).The molecular pathogenesis of HPV-driven HNSCC also seems distinct from HPV-negative tumors, with previous studies showing a divergent spectrum of alterations in gene expression, mutations, amplifications, and deletions as well as distinct epigenome alterations (10-15). HPV is known to drive tumorigenesis through the actions of its major oncoproteins E6 and E7, which target numerous cellular pathways, including inactivation of p53 and the retinoblastoma (Rb) protein (16-18). Together with E5, they also play an important role in immune evasion, being involved in both innate and adaptive immunity (19,20).Initially after infection, HPV is identified in circular extrachromosomal particles or episomes. A critical step in progression to cancer is the integration of viral DNA into the host cell Significance A significant proportion of head and neck cancer is driven by human papil...
SUMMARY This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smoking and/or human papillomavirus (HPV). SCCs harbor 3q, 5p, and other recurrent chromosomal copy-number alterations (CNAs), DNA mutations, and/or aberrant methylation of genes and microRNAs, which are correlated with the expression of multi-gene programs linked to squamous cell stemness, epithelial-to-mesenchymal differentiation, growth, genomic integrity, oxidative damage, death, and inflammation. Low-CNA SCCs tended to be HPV(+) and display hypermethylation with repression of TET1 demethylase and FANCF, previously linked to predisposition to SCC, or harbor mutations affecting CASP8, RAS-MAPK pathways, chromatin modifiers, and immunoregulatory molecules. We uncovered hypomethylation of the alternative promoter that drives expression of the ΔNp63 oncogene and embedded miR944. Co-expression of immune checkpoint, T-regulatory, and Myeloid suppressor cells signatures may explain reduced efficacy of immune therapy. These findings support possibilities for molecular classification and therapeutic approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.