BackgroundLung adenocarcinoma is the leading cause of cancer-related deaths among both men and women in the world. Despite recent advances in diagnosis and treatment, the mortality rates with an overall 5-year survival of only 15%. This high mortality is probably attributable to early metastasis. Although several well-known markers correlated with poor/metastasis prognosis in lung adenocarcinoma patients by immunohistochemistry was reported, the molecular mechanisms of lung adenocarcinoma development are still not clear. To explore novel molecular markers and their signaling pathways will be crucial for aiding in treatment of lung adenocarcinoma patients.Methodology/Principal FindingsTo identify novel lung adenocarcinoma-associated /metastasis genes and to clarify the underlying molecular mechanisms of these targets in lung cancer progression, we created a bioinformatics scheme consisting of integrating three gene expression profile datasets, including pairwise lung adenocarcinoma, secondary metastatic tumors vs. benign tumors, and a series of invasive cell lines. Among the novel targets identified, FLJ10540 was overexpressed in lung cancer tissues and is associated with cell migration and invasion. Furthermore, we employed two co-expression strategies to identify in which pathway FLJ10540 was involved. Lung adenocarcinoma array profiles and tissue microarray IHC staining data showed that FLJ10540 and VEGF-A, as well as FLJ10540 and phospho-AKT exhibit positive correlations, respectively. Stimulation of lung cancer cells with VEGF-A results in an increase in FLJ10540 protein expression and enhances complex formation with PI3K. Treatment with VEGFR2 and PI3K inhibitors affects cell migration and invasion by activating the PI3K/AKT pathway. Moreover, knockdown of FLJ10540 destabilizes formation of the P110-α/P85-α-(PI3K) complex, further supporting the participation of FLJ10540 in the VEGF-A/PI3K/AKT pathway.Conclusions/SignificanceThis finding set the stage for further testing of FLJ10540 as a new therapeutic target for treating lung cancer and may contribute to the development of new therapeutic strategies that are able to block the PI3K/AKT pathway in lung cancer cells.
Epstein-Barr virus (EBV) expresses an immediate-earlyprotein, Rta, to activate the transcription of EBV lytic genes and the lytic cycle. This work identifies Ubc9 and PIAS1 as binding partners of Rta in a yeast two-hybrid screen. These bindings are verified by glutathione S-transferase pull-down assay, coimmunoprecipitation, and confocal microscopy. The interactions appear to cause Rta sumoylation, because not only can Rta be sumoylated in vitro but also sumoylated Rta can be detected in P3HR1 cells following lytic induction and in 293T cells after transfecting plasmids that express Rta and SUMO-1. Moreover, PIAS1 stimulates conjugation of SUMO-1 to Rta, thus acting as an E3 ligase. Furthermore, transfecting plasmids that express Ubc9, PIAS1, and SUMO-1 increases the capacity of Rta to transactivate the promoter that includes an Rta response element, indicating that the modification by SUMO-1 increases the transactivation activity of Rta. This study reveals that Rta is sumoylated at the Lys-19, Lys-213, and Lys-517 residues and that SUMO-1 conjugation at the Lys-19 residue is crucial for enhancing the transactivation activity of Rta. These results indicate that sumoylation of Rta may be important in EBV lytic activation.Small ubiquitin-like modifiers (SUMOs) 1 are a group of proteins that conjugate a wide range of proteins in the cell (1-3). In human cells, three types of SUMO, i.e. SUMO-1, SUMO-2, and SUMO-3, have been identified (4 -7). These SUMO molecules conjugate to their target proteins through an isopeptide bond formed between the C-terminal glycine residue of SUMO and a lysine residue in the substrate, frequently found at a conserved KXE motif; where represents a hydrophobic amino acid residue, including Leu, Ile, Val, or Phe (8,9). As is generally known, in a SUMO conjugation reaction, SUMO hydrolase first removes the four C-terminal amino acids of SUMO, exposing a glycine residue to facilitate SUMO conjugation. The SUMO molecule is then adenylated and covalently linked to a SUMO-activating E1 enzyme (10, 11). Subsequently, SUMO is transferred to the SUMO-conjugating E2 enzyme, Ubc9, which catalyzes the transfer of SUMO to its target proteins (12-15). The E3 ligase, which stimulates SUMO-1 conjugation to target proteins, has only recently been identified. Three proteins, including PIAS, RanBP2, and Pc2, are currently known to participate in the process of sumoylation (16 -20). Sumoylation may influence protein functions in many ways. An important function of SUMO is to stabilize its target proteins by acting as an antagonist to ubiquitin-mediated proteolysis (21). For instance, SUMO modification blocks ubiquitination and destruction of IB by the SCF(-TrCP) E3 ubiquitin ligase complex (21), thus stabilizing the ability of IB to inhibit NF-B. SUMO modification is also known to influence protein localization. For example, SUMO-1 modification not only targets promyelocytic leukemia protein (PML) to discrete subnuclear structures called PML nuclear bodies (22) but also is necessary for RanGAP1 binding t...
Multiple phosphorylation sites of Drp1 have been characterized for their functional importance. However, the functional consequence of GSK3beta-mediated phosphorylation of Drp1 remains unclear. In this report, we pinpointed 11 Serine/Threonine sites spanning from residue 634∼736 of the GED domain and robustly confirmed Drp1 Ser693 as a novel GSK3beta phosphorylation site. Our results suggest that GSK3beta-mediated phosphorylation at Ser693 does cause a dramatic decrease of GTPase activity; in contrast, GSK3beta-mediated phosphorylation at Ser693 appears not to affect Drp1 inter-/intra-molecular interactions. After identifying Ser693 as a GSK3beta phosphorylation site, we also determined that K679 is crucial for GSK3beta-binding, which strongly suggests that Drp1 is a novel substrate for GSK3beta. Thereafter, we found that overexpressed S693D, but not S693A mutant, caused an elongated mitochondrial morphology which is similar to that of K38A, S637D and K679A mutants. Interestedly, using H89 and LiCl to inhibit PKA and GSK3beta signaling, respectively, it appears that a portion of the elongated mitochondria switched to a fragmented phenotype. In investigating the biofunctionality of phosphorylation sites within the GED domain, cells overexpressing Drp1 S693D and S637D, but not S693A, showed an acquired resistance to H2O2-induced mitochondrial fragmentation and ensuing apoptosis, which affected cytochrome c, capase-3, -7, and PARP, but not LC3B, Atg-5, Beclin-1 and Bcl2 expressions. These results also showed that the S693D group is more effective in protecting both non-neuronal and neuronal cells from apoptotic death than the S637D group. Altogether, our data suggest that GSK3beta-mediated phosphorylation at Ser693 of Drp1 may be associated with mitochondrial elongation via down-regulating apoptosis, but not autophagy upon H2O2 insult.
Thioridazine (THD) is a common phenothiazine antipsychotic drug reported to suppress growth in several types of cancer cells. We previously showed that THD acts as an antiglioblastoma and anticancer stem-like cell agent. However, the signaling pathway underlying autophagy and apoptosis induction remains unclear. THD treatment significantly induced autophagy with upregulated AMPK activity and engendered cell death with increased sub-G1 in glioblastoma multiform (GBM) cell lines. Notably, through whole gene expression screening with THD treatment, frizzled (Fzd) proteins, a family of G-protein-coupled receptors, were found, suggesting the participation of Wnt/β-catenin signaling. After THD treatment, Fzd-1 and GSK3β-S9 phosphorylation (inactivated form) was reduced to promote β-catenin degradation, which attenuated P62 inhibition. The autophagy marker LC3-II markedly increased when P62 was released from β-catenin inhibition. Additionally, the P62-dependent caspase-8 activation that induced P53-independent apoptosis was confirmed by inhibiting T-cell factor/β-catenin and autophagy flux. Moreover, treatment with THD combined with temozolomide (TMZ) engendered increased LC3-II expression and caspase-3 activity, indicating promising drug synergism. In conclusion, THD induces autophagy in GBM cells by not only upregulating AMPK activity, but also enhancing P62-mediated autophagy and apoptosis through Wnt/β-catenin signaling. Therefore, THD is a potential alternative therapeutic agent for drug repositioning in GBM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.