Increasing the in vivo residence times of protein therapeutics could decrease their dosing frequencies. We show that genetic fusion of an unstructured recombinant polypeptide of 864 amino acids, called XTEN, to a peptide or protein provides an apparently generic approach to extend plasma half-life. Allometric scaling suggests that a fusion of XTEN to the exenatide peptide should increase exenatide half-life in humans from 2.4 h to a projected time of 139 h. We confirmed the biological activity of the exenatide-XTEN fusion in mice. As extended stability might exacerbate undesirable side effects in some cases, we show that truncating the XTEN sequence can regulate plasma half-life. XTEN lacks hydrophobic amino acid residues that often contribute to immunogenicity and complicate manufacture. Based on data on XTEN fusions to exenatide, glucagon, GFP and human growth hormone, we expect that XTEN will enable dosing of otherwise rapidly cleared protein drugs at up to monthly intervals in humans.
PLK4 was identified as a promising therapeutic target through a systematic approach that combined RNAi screening with gene expression analysis in human breast cancers and cell lines. A drug discovery program culminated in CFI-400945, a potent and selective PLK4 inhibitor. Cancer cells treated with CFI-400945 exhibit effects consistent with PLK4 kinase inhibition, including dysregulated centriole duplication, mitotic defects, and cell death. Oral administration of CFI-400945 to mice bearing human cancer xenografts results in the significant inhibition of tumor growth at doses that are well tolerated. Increased antitumor activity in vivo was observed in PTEN-deficient compared to PTEN wild-type cancer xenografts. Our findings provide a rationale for the clinical evaluation of CFI-400945 in patients with solid tumors, in particular those deficient in PTEN.
Laceration was associatied with a significantly higher risk of endophthalmitis for open globe injuries. Early primary repair, intraocular tissue prolapse and self-sealing of wounds were independent protective factors against the development of endophthalmitis.
The family of Polo-like kinases is important in the regulation of mitotic progression; this work keys on one member, namely Polo-like kinase 4 (PLK4). PLK4 has been identified as a candidate anticancer target which prompted a search for potent and selective inhibitors of PLK4. The body of the paper describes lead generation and optimization work which yielded nanomolar PLK4 inhibitors. Lead generation began with directed virtual screening, using a ligand-based focused library and a PLK4 homology model. Validated hits were used as starting points for the design and discovery of PLK4 inhibitors of novel structure, namely (E)-3-((1H-indazol-6-yl)methylene)indolin-2-ones. Computational models, based on a published X-ray structure (PLK4 kinase domain), were used to understand and optimize the in vitro activity of the series; potent antiproliferative activity was obtained. The kinase selectivity profile and cell cycle analysis of selected inhibitors are described. The results of a xenograft study with an optimized compound 50 (designated CFI-400437) support the potential of these novel PLK4 inhibitors for cancer therapy.
Poly-(ADP-ribose) polymerase inhibitors (PARPi) selectively kill breast and ovarian cancers with defects in homologous recombination (HR) caused by BRCA1/2 mutations. There is also clinical evidence for the utility of PARPi in breast and ovarian cancers without BRCA mutations, but the underlying mechanism is not clear. Here, we report that the deubiquitylating enzyme USP15 affects cancer cell response to PARPi by regulating HR. Mechanistically, USP15 is recruited to DNA double-strand breaks (DSBs) by MDC1, which requires the FHA domain of MDC1 and phosphorylated Ser678 of USP15. Subsequently, USP15 deubiquitinates BARD1 BRCT domain, and promotes BARD1-HP1γ interaction, resulting in BRCA1/BARD1 retention at DSBs. USP15 knockout mice exhibit genomic instability in vivo. Furthermore, cancer-associated USP15 mutations, with decreased USP15-BARD1 interaction, increases PARP inhibitor sensitivity in cancer cells. Thus, our results identify a novel regulator of HR, which is a potential biomarker for therapeutic treatment using PARP inhibitors in cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.