BackgroundCinnamomum camphora has been cultivated as an economically important tree for its medicinal and aromatic properties. Selective breeding has produced Cinnamomum plants for special uses, including spice strains with characteristic flavors and aromas and high-potency medicinal cultivars. The molecular biology underlying terpenoid biosynthesis is still unexplored.ResultsGas chromatography-mass spectrometry was used to analyze the differences in contents and compositions of essential oil terpenoids in linalool- and borneol-type chemotypes of C. camphora. The data revealed that the essential oils consist primarily of monoterpenes with only very minor quantities of sesquiterpenes and diterpenes and that the essential oil differs in different chemotypes of C. camphora, with higher yields of (−)-borneol from the borneol-type than from the linalool-type. To study the terpenoid biosynthesis of signature compounds of the major monoterpenes, we performed RNA sequencing to profile the leaf transcriptomes of the two chemotypes of C. camphora. A total of 23.76 Gb clean data was generated from two chemotypes and assembled into 156,184 unigenes. The total length, average length, N50 and GC content of unigenes were 155,645,929 bp, 997 bp, 1430 bp, and 46.5%, respectively. Among them, 76,421 unigenes were annotated by publicly available databases, of which 67 candidate unigenes were identified to be involved in terpenoid biosynthesis in C. camphora. A total of 2863 unigenes were identified to be differentially expression between borneol-type and linalool-type, including 1714 up-regulated and 1149 down-regulated unigenes. Most genes encoding proteins involved in terpenoid precursor MVA and MEP pathways were expressed in similar levels in both chemotypes of C. camphora. In addition, 10 and 17 DEGs were significantly enriched in the terpene synthase activity and oxidoreductase activity terms of their directed acyclic graphs (DAG), respectively. Three monoterpene synthase genes, TPS14-like1, TPS14-like2 and TPS14-like3 were up-regulated in the borneol-type compared to the linalool-type, and their expression levels were further verified using quantitative real-time PCR.ConclusionsThis study provides a global overview of gene expression patterns related to terpenoid biosynthesis in C. camphora, and could contribute to a better understanding of the differential accumulation of terpenoids in different C. camphora chemotypes.Electronic supplementary materialThe online version of this article (10.1186/s12864-018-4941-1) contains supplementary material, which is available to authorized users.
Hepatocellular carcinoma (HCC) is one of the most common cancers in the world. Circular RNAs (circRNAs) are a new class of endogenous functional non-coding RNAs (ncRNAs), and have been demonstrated to play important roles in the development of HCC. This study aimed to explore the significance of circRNAs in HCC progression. HCC-associated circRNA expression profiles GSE94508 and GSE97332 were downloaded from the Gene Expression Omnibus database (GEO), and 87 differentially expressed circRNAs (DECs) between HCC tissues and paired non-cancer tissues were identified, including 76 up-regulated and 11 down-regulated circRNAs. Gene ontolog (GO) and pathway analyses of the host genes of these DECs suggested that these host genes were enriched in cell adhesion, cytosol, and protein binding, and were associated with tight junction and Wnt signaling pathways. CircRNA-miRNA interaction prediction identified 20 miRNAs that predispose to interact with DECs. Among these, four essential miRNAs, hsa-miR-7-5p, hsa-miR-145-5p, hsa-miR-203a-3p, and hsa-miR-192-5p, were reported to play pivotal roles in HCC progression by targeting multiple genes. Pathway analysis suggested that putative target genes of these essential miRNAs were involved in HCC-associated signaling pathways, such as Wnt, TGF-β, and Ras; whereas protein-protein network (PPI) analysis demonstrated that some validated target genes of these miRNAs, such as PIK3CA, AKT1, MYC, JUN, SMAD4, and SRC, were hub target genes as they have more counts of interacting protein. In the meantime, the deregulation of some DECs was validated in HCC cell line HepG2 compared with normal liver cell line L02 by quantitative real-time polymerase chain reaction (qRT-PCR) and the Sanger sequencing. This study identified a set of DECs in HCC, and provided a comprehensive understanding of the roles of these DECs in HCC progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.