It appears that the glycolysis pathway and amino acid metabolic activity are increased in patients with psoriasis. These metabolic perturbations may stem from increased demand for protein biosynthesis and keratinocyte hyperproliferation. Our findings may help to elucidate the pathogenesis of psoriasis and provide insights into early diagnosis and therapeutic intervention.
The recently developed single-cell CRISPR screening techniques, independently termed Perturb-Seq, CRISP-seq, or CROP-seq, combine pooled CRISPR screening with single-cell RNA-seq to investigate functional CRISPR screening in a single-cell granularity. Here, we present MUSIC, an integrated pipeline for model-based understanding of single-cell CRISPR screening data. Comprehensive tests applied to all the publicly available data revealed that MUSIC accurately quantifies and prioritizes the individual gene perturbation effect on cell phenotypes with tolerance for the substantial noise that exists in such data analysis. MUSIC facilitates the single-cell CRISPR screening from three perspectives, i.e., prioritizing the gene perturbation effect as an overall perturbation effect, in a functional topic-specific way, and quantifying the relationships between different perturbations. In summary, MUSIC provides an effective and applicable solution to elucidate perturbation function and biologic circuits by a model-based quantitative analysis of single-cell-based CRISPR screening data.
The airways and alveoli of the human respiratory tract are lined by two distinct types of epithelium, which are the primary targets of respiratory viruses. We previously established long-term expanding human lung epithelial organoids from lung tissues and developed a ‘proximal’ differentiation protocol to generate mucociliary airway organoids. However, a respiratory organoid system with bipotential of the airway and alveolar differentiation remains elusive. Here we defined a ‘distal’ differentiation approach to generate alveolar organoids from the same source for the derivation of airway organoids. The alveolar organoids consisting of type I and type II alveolar epithelial cells (AT1 and AT2, respectively) functionally simulate the alveolar epithelium. AT2 cells maintained in lung organoids serve as progenitor cells from which alveolar organoids derive. Moreover, alveolar organoids sustain a productive SARS-CoV-2 infection, albeit a lower replicative fitness was observed compared to that in airway organoids. We further optimized 2-dimensional (2D) airway organoids. Upon differentiation under a slightly acidic pH, the 2D airway organoids exhibit enhanced viral replication, representing an optimal in vitro correlate of respiratory epithelium for modeling the high infectivity of SARS-CoV-2. Notably, the higher infectivity and replicative fitness of the Omicron variant than an ancestral strain were accurately recapitulated in these optimized airway organoids. In conclusion, we have established a bipotential organoid culture system able to reproducibly expand the entire human respiratory epithelium in vitro for modeling respiratory diseases, including COVID-19.
An
in vitro
model of the nasal epithelium is imperative for understanding cell biology and virus-host interaction in the human upper respiratory tract. Here we report an organoid culture system of the nasal epithelium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.