Lithium–sulfur (Li–S) batteries are considered as one of the most promising next‐generation rechargeable batteries owing to their high energy density and cost‐effectiveness. However, the sluggish kinetics of the sulfur reduction reaction process, which is so far insufficiently explored, still impedes its practical application. Metal–organic frameworks (MOFs) are widely investigated as a sulfur immobilizer, but the interactions and catalytic activity of lithium polysulfides (LiPs) on metal nodes are weak due to the presence of organic ligands. Herein, a strategy to design quasi‐MOF nanospheres, which contain a transition‐state structure between the MOF and the metal oxide via controlled ligand exchange strategy, to serve as sulfur electrocatalyst, is presented. The quasi‐MOF not only inherits the porous structure of the MOF, but also exposes abundant metal nodes to act as active sites, rendering strong LiPs absorbability. The reversible deligandation/ligandation of the quasi‐MOF and its impact on the durability of the catalyst over the course of the electrochemical process is acknowledged, which confers a remarkable catalytic activity. Attributed to these structural advantages, the quasi‐MOF delivers a decent discharge capacity and low capacity‐fading rate over long‐term cycling. This work not only offers insight into the rational design of quasi‐MOF‐based composites but also provides guidance for application in Li–S batteries.
excellent safety and low cost. However, electrochemical corrosion, hydrogen evolution, and dendrite growth from the Zn anode result in poor cycle performance of the Zn-ion battery, which is much more severe at high current density, active material loading, and depth of discharge (DOD). [2] In addition, the electrochemical performance of Zn-ion batteries severely deteriorates under low temperature due to the sluggish reaction kinetics. Therefore, it is vital to develop rational strategies to improve the reversibility of the Zn anode, especially under the above-mentioned harsh conditions. [3][4][5] Recent studies have shown that regulating the solvation structure of aqueous electrolytes can alter the behavior of Zn deposition and dendrite growth. [6] Cur-Editor's Choice
The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/adma.202108079.
Althoughone of the most mature battery technologies, lithium-ion batteries still have many aspects that have not reached the desired requirements, such as energy density, current density, safety, environmental compatibility, and price. To solve these problems, all-solid-state lithium batteries (ASSLB) based on lithium metal anodes with high energy density and safety have been proposed and become a research hotpot in recent years. Due to the advanced electrochemical properties of 2D materials (2DM), they have been applied to mitigate some of the current problems of ASSLBs, such as high interface impedance and low electrolyte ionic conductivity. In this work, the background and fabrication method of 2DMs are reviewed initially. The improvement strategies of 2DMs are categorized based on their application in the three main components of ASSLBs: The anode, cathode, and electrolyte. Finally, to elucidate the mechanisms of 2DMs in ASSLBs, the role of in situ characterization, synchrotron X-ray techniques, and other advanced characterization are discussed.
Electrochemical CO2 reduction to CO is a potential sustainable strategy for alleviating CO2 emission and producing valuable fuels. In the quest to resolve its current problems of low‐energy efficiency and insufficient durability, a dual‐scale design strategy is proposed by implanting a non‐noble active Sn–ZnO heterointerface inside the nanopores of high‐surface‐area carbon nanospheres (Sn–ZnO@HC). The metal d‐bandwidth tuning of Sn and ZnO alters the extent of substrate–molecule orbital mixing, facilitating the breaking of the *COOH intermediate and the yield of CO. Furthermore, the confinement effect of tailored nanopores results in a beneficial pH distribution in the local environment around the Sn–ZnO nanoparticles and protects them against leaching and aggregating. Through integrating electronic and nanopore‐scale control, Sn–ZnO@HC achieves a quite low potential of −0.53 V vs reversible hydrogen electrode (RHE) with 91% Faradaic efficiency for CO and an ultralong stability of 240 h. This work provides proof of concept for the multiscale design of electrocatalysts.
Lithium–Sulfur Batteries
A “Quasi‐MOF” nanosphere is introduced by Yongguang Zhang, Xin Wang, Zhongwei Chen, and co‐workers in article number 2105541 as an efficient and durable sulfur electrocatalyst toward accelerated sulfur reduction reaction. The reversible de‐ligandation/ligandation of this Quasi‐MOF over the course of the electrochemical process endows its with excellent catalytic activity and remarkable durability. Attributed to these structural advantages, the Quasi‐MOF delivers a decent discharge capacity and low‐capacity fading rate over long‐term cycling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.