The blood-brain barrier (BBB), as a crucial gate of brain-blood molecular exchange, is involved in the pathogenesis of multiple neurological diseases. Oxidative stress is caused by an imbalance between the production of reactive oxygen species (ROS) and the scavenger system. Since oxidative stress plays a significant role in the production and maintenance of the BBB, the cerebrovascular system is especially vulnerable to it. The pathways that initiate BBB dysfunction include, but are not limited to, mitochondrial dysfunction, excitotoxicity, iron metabolism, cytokines, pyroptosis, and necroptosis, all converging on the generation of ROS. Interestingly, ROS also provide common triggers that directly regulate BBB damage, parameters including tight junction (TJ) modifications, transporters, matrix metalloproteinase (MMP) activation, inflammatory responses, and autophagy. We will discuss the role of oxidative stress-mediated BBB disruption in neurological diseases, such as hemorrhagic stroke, ischemic stroke (IS), Alzheimer’s disease (AD), Parkinson’s disease (PD), traumatic brain injury (TBI), amyotrophic lateral sclerosis (ALS), and cerebral small vessel disease (CSVD). This review will also discuss the latest clinical evidence of potential biomarkers and antioxidant drugs towards oxidative stress in neurological diseases. A deeper understanding of how oxidative stress damages BBB may open up more therapeutic options for the treatment of neurological diseases.
As the most familiar type of arthritis and a chronic illness of the joints, Osteoarthritis (OA) affects a great number of people on the global scale. XuanHuSuo powder (XHSP), a conventional herbal formula from China, has been extensively applied in OA treatment. Nonetheless, its pharmacological mechanism has not been completely expounded. In this research, a network pharmacology approach has been chosen to study the pharmacological mechanism of XHSP on OA, and the pharmacology networks were established based on the relationship between four herbs found in XHSP, compound targets, and OA targets. The pathway enrichment analysis revealed that the significant bioprocess networks of XHSP on OA were regulation of inflammation, interleukin-1β (IL-1β) production and nitric oxide (NO) biosynthetic process, response to cytokine or estrogen stimuli, and antiapoptosis. These effects have not been reported previously. The comprehensive network pharmacology approach developed by our research has revealed, for the first time, a connection between four herbs found in XHSP, corresponding compound targets, and OA pathway systems that are conducive to expanding the clinical application of XHSP. The proposed network pharmacology approach could be a promising complementary method by which researchers might better evaluate multitarget or multicomponent drugs on a systematic level.
Heart Failure (HF) is associated with significantly high morbidity and mortality. We performed a meta-analysis and updated new evidences from randomized controlled trials (RCTs) to determine the effects of Tai Chi (TC) in patients with HF. Electronic literature search of Medline, PubMed, EMBASE, the Cochrane Library, China national knowledge infrastructure (CNKI), and Wan Fang Database was conducted from inception of their establishment until 2017. And we also searched Clinical Trials Registries (https://clinicaltrials.gov/ and www.controlled-trials.com) for on-going studies. A total of 11 trials with 656 patients were available for analysis. The results suggested that TC was associated with an obviously improved 6-min walk distance [6MWD, weighted mean difference (WMD) 65.29 m; 95% CI 32.55–98.04] and quality of life (Qol, WMD −11.52 points; 95% CI −16.5 to −6.98) and left ventricular ejection fraction (LVEF, WMD 9.94%; 95% CI 6.95 to 12.93). TC was shown to reduce serum B-type natriuretic peptide [BNP, standard mean difference (SMD) −1.08 pg/mL; 95% CI −1.91 to −0.26] and heart rate (HR, WMD −2.52 bpm; 95% CI −3.49 to −1.55). In summary, our meta-analysis demonstrated the clinical evidence about TC for HF is inconclusive. TC could improve 6MWD, Qol and LVEF in patients with HF and may reduce BNP and HR. However, there is a lack of evidence to support TC altering other important long-term clinical outcomes so far. Further larger and more sustainable RCTs are urgently needed to investigate the effects of TC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.