This paper presents for the first time a novel method of in situ depositing plasmonic Bi nanoparticles on BiOCl nanosheets (Bi/BiOCl) for PEC water splitting.
Background
The JACOB trial (NCT01774786) was a double-blinded, placebo-controlled, randomized, multicenter, international, phase III trial evaluating the efficacy and safety of adding pertuzumab to trastuzumab and chemotherapy in first-line treatment of human epidermal growth factor receptor 2 (HER2)-positive metastatic gastric cancer/gastroesophageal junction cancer (GEJC). The aim of this analysis was to investigate efficacy and safety outcomes in the Chinese subpopulation from the JACOB trial.
Methods
This post hoc subpopulation analysis included all patients recruited in mainland China (
n
= 163; 20.9%) between June 2013 and January 2016. The patients were randomly assigned in a 1:1 ratio to receive pertuzumab plus trastuzumab and chemotherapy (pertuzumab group;
n
= 82) or placebo plus trastuzumab and chemotherapy (control group;
n
= 81). Intravenous pertuzumab (840 mg) and trastuzumab (8 mg/kg loading and 6 mg/kg maintenance doses) were given every 3 weeks until disease progression or unacceptable toxicity. Chemotherapy was given as per standard regimens/doses of capecitabine or 5-fluorouracil plus cisplatin. The primary endpoint was overall survival (OS); secondary efficacy endpoints included progression-free survival (PFS), and overall objective response rate (ORR).
Results
The median OS was 18.7 months in the pertuzumab group and 16.1 months in the control group (hazard ratio [HR] 0.75; 95% confidence interval [CI] 0.49 to 1.14). The median PFS was 10.5 and 8.6 months in the pertuzumab and control groups, respectively (HR 0.85; 95% CI 0.60 to 1.21), and the median ORRs were 68.9% and 55.7%, respectively. The treatment effect in this Chinese subpopulation showed consistency with that in the global ITT population with numerically lower HR for OS and PFS compared with the control group. The safety profiles of the pertuzumab and control groups in this Chinese subpopulation analysis were generally comparable. The most common grade 3–5 adverse events were neutropenia, anemia, and leukopenia. However, due to the nature of being a post hoc subgroup analysis, the results presented here are descriptive only and need to be interpreted with caution.
Conclusions
OS and PFS were numerically improved by adding pertuzumab to trastuzumab and chemotherapy as first-line treatment in Chinese HER2-positive gastric cancer/GEJC patients, and this regimen demonstrated an acceptable safety profile.
Trial registration
ClinicalTrials.gov. NCT01774786. Registered on 24 January 2013,
https://clinicaltrials.gov/ct2/show/NCT01774786
Electronic supplementary material
The online version of this article (10.1186/s40880-019-0384-6) contains supplementary material, which is available to authorized users.
A novel one-dimensional MgFe2O4/MoS2 heterostructure has been successfully designed and fabricated. The bare MgFe2O4 was obtained as uniform nanowires through electrospinning, and MoS2 thin film appeared on the surface of MgFe2O4 after further chemical vapor deposition. The structure of the MgFe2O4/MoS2 heterostructure was systematic investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectrometry (XPS), and Raman spectra. According to electrochemical impedance spectroscopy (EIS) results, the MgFe2O4/MoS2 heterostructure showed a lower charge-transfer resistance compared with bare MgFe2O4, which indicated that the MoS2 played an important role in the enhancement of electron/hole mobility. MgFe2O4/MoS2 heterostructure can efficiently degrade tetracycline (TC), since the superoxide free-radical can be produced by sample under illumination due to the active species trapping and electron spin resonance (ESR) measurement, and the optimal photoelectrochemical degradation rate of TC can be achieved up to 92% (radiation intensity: 47 mW/cm(2), 2 h). Taking account of its unique semiconductor band gap structure, MgFe2O4/MoS2 can also be used as an photoelectrochemical anode for hydrogen production by water splitting, and the hydrogen production rate of MgFe2O4/MoS2 was 5.8 mmol/h·m(2) (radiation intensity: 47 mW/cm(2)), which is about 1.7 times that of MgFe2O4.
Overcoming one of most challenging limitations of bare TiO2 with large bandgap can be achieved by rational design and fabrication of heterostructures. Multicomponent sulfides with a nature of tunable band structure can be a good alternative to decorating TiO2, but there remains a major trade‐off between the high efficiency and the long‐term durability, so the stability issue must be addressed upon the use of sulfides. Here, an effective strategy is demonstrated with Bi‐doped AgIn5S8 (Bi‐AgIn5S8) decorated TiO2 photoanode, where twofold enhancement of the photocurrent is achieved. More importantly, it is the first time to integrate polydopamine passivation layer and AgIn5S8 for simultaneously enhancing the solar conversion efficiency and stability. The incident photon‐to‐current conversion efficiency value is tuned up to 45% (0.4 V vs Ag/AgCl), and the photocurrent density can keep for 90.8% after 5 h. Corresponding hydrogen evolution rate has increased to 8.6 µmol h−1, which is three times higher than that of bare TiO2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.