The ubiquitous second messenger Ca2+ has long been recognized as a key regulator in cell migration. Locally confined Ca2+, in particular, is essential for building front-to-rear Ca2+ gradient, which serves to maintain the morphologic polarity required in directionally migrating cells. However, little is known about the source of the Ca2+ and the mechanism by which they crosstalk between different signaling pathways in cancer cells. Here, we report that calcium release–activated calcium modulator 2 (ORAI2), a poorly characterized store-operated calcium (SOC) channel subunit, predominantly upregulated in the lymph node metastasis of gastric cancer, supports cell proliferation and migration. Clinical data reveal that a high frequency of ORAI2-positive cells in gastric cancer tissues significantly correlated with poor differentiation, invasion, lymph node metastasis, and worse prognosis. Gain- and loss-of-function showed that ORAI2 promotes cell motility, tumor formation, and metastasis in both gastric cancer cell lines and mice. Mechanistically, ORAI2 mediated SOC activity and regulated tumorigenic properties through the activation of the PI3K/Akt signaling pathways. Moreover, ORAI2 enhanced the metastatic ability of gastric cancer cells by inducing FAK-mediated MAPK/ERK activation and promoted focal adhesion disassembly at rear-edge of the cell. Collectively, our results demonstrate that ORAI2 is a novel gene that plays an important role in the tumorigenicity and metastasis of gastric cancer. Significance: These findings describe the critical role of ORAI2 in gastric cancer cell migration and tumor metastasis and uncover the translational potential to advance drug discovery along the ORAI2 signaling pathway.
Biglycan (BGN) is overexpressed in cancer stem cells of colon cancer and induces the activation of NF-κB pathway which contributes to the chemotherapy resistance of diverse cancer types. Therefore, we hypothesized that the overexpression of BGN also promoted the development of multiple drug resistance (MDR) in colon cancer via NF-κB pathway. The expression of BGN was bilaterally modulated in colon cancer cell lines HT-29 and SW-480 and the effect of treatments on the cell proliferation and resistance to 5-FU was assessed. Moreover, the role of NF-κB signaling in the BGN-mediated formation of MDR was further investigated by subjecting BGN-overexpressed SW-480 cells to the co-treatment of chemo-agents and NF-κB inhibitor, PDTC. The inhibition of BGN expression decreased the proliferation potential of HT-29 cells while the induction of BGN expression increased the potential of SW-480 cells. BGN knockdown increased HT-29 cells' sensitivity to 5-FU, represented by the lower colony number and higher apoptotic rate. To the contrary, BGN overexpression promoted the resistance of SW-480 cells to 5-FU. The effect of BGN modulation on colon cancer cells was associated with the changes in apoptosis and NF-κB pathways: BGN inhibition increased the expressions of pro-apoptosis indicators and suppressed NF-κB pathway activity while BGN overexpression had the opposite effect. It was also found that the BGN-mediated formation of MDR was impaired when NF-κB pathway was blocked. Findings outlined in the current study showed that BGN contributed to the formation of chemotherapy resistance in colon cancer cells by activating NF-κB signaling.
Rationale: Previous studies have shown that human embryonic stem cell-derived cardiomyocytes improved myocardial recovery when administered to infarcted pig and non-human primate hearts. However, the engraftment of intramyocardially delivered cells is poor and the effectiveness of clinically relevant doses of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in large animal models of myocardial injury remains unknown. Here, we determined whether thymosin β4 (Tb4) could improve the engraftment and reparative potency of transplanted hiPSC-CMs in a porcine model of myocardial infarction (MI). Methods: Tb4 was delivered from injected gelatin microspheres, which extended the duration of Tb4 administration for up to two weeks in vitro. After MI induction, pigs were randomly distributed into 4 treatment groups: the MI Group was injected with basal medium; the Tb4 Group received gelatin microspheres carrying Tb4; the CM Group was treated with 1.2 × 10 8 hiPSC-CMs; and the Tb4+CM Group received both the Tb4 microspheres and hiPSC-CMs. Myocardial recovery was assessed by cardiac magnetic resonance imaging (MRI), arrhythmogenesis was monitored with implanted loop recorders, and tumorigenesis was evaluated via whole-body MRI. Results: In vitro, 600 ng/mL of Tb4 protected cultured hiPSC-CMs from hypoxic damage by upregulating AKT activity and BcL-XL and promoted hiPSC-CM and hiPSC-EC proliferation. In infarcted pig hearts, hiPSC-CM transplantation alone had a minimal effect on myocardial recovery, but co-treatment with Tb4 significantly enhanced hiPSC-CM engraftment, induced vasculogenesis and the proliferation of cardiomyocytes and endothelial cells, improved left ventricular systolic function, and reduced infarct size. hiPSC-CM implantation did not increase incidence of ventricular arrhythmia and did not induce tumorigenesis in the immunosuppressed pigs. Conclusions: Co-treatment with Tb4-microspheres and hiPSC-CMs was safe and enhanced the reparative potency of hiPSC-CMs for myocardial repair in a large-animal model of MI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.