SUMMARY T cell differentiation into distinct functional effector and inhibitory subsets is regulated in part by the cytokine environment present at the time of antigen recognition. Here, we show that hypoxia-inducible factor 1 (HIF-1), a key metabolic sensor, regulates the balance between T regulatory (Treg) and TH17 differentiation. HIF-1α enhances TH17 development through direct transcriptional activation of RORvt, and via tertiary complex formation with RORvt and p300 recruitment to the IL17 promoter, thereby regulating TH17 signature genes. Concurrently, HIF-1α attenuates Treg development by binding Foxp3 and targeting it for proteasomal degradation. Importantly this regulation occurs under both normoxic and hypoxic conditions. Mice with HIF-1α deficient T cells are resistant to induction of TH17-dependent experimental autoimmune encephalitis associated with diminished TH17 and increased Treg cells. These findings highlight the importance of metabolic cues in T cell fate determination and suggest that metabolic modulation could ameliorate certain T cell-based immune pathologies.
SUMMARY Regulatory T (Treg) cells suppress inflammatory immune responses and autoimmunity caused by self-reactive T cells. The key Treg cell transcription factor Foxp3 is downregulated during inflammation to allow for the acquisition of effector T cell-like functions. Here, we demonstrate that stress signals elicited by proinflammatory cytokines and lipopolysaccharide lead to the degradation of Foxp3 through the action of the E3 ubiquitin ligase Stub1. Stub1 interacted with Foxp3 to promote its K48-linked polyubiquitination in an Hsp70-dependent manner. Knockdown of endogenous Stub1 or Hsp70 prevented Foxp3 degradation. Furthermore, the overexpression of Stub1 in Treg cells abrogated their ability to suppress inflammatory immune responses in vitro and in vivo, and conferred a T helper 1 (Th1) cell-like phenotype. Our results demonstrate the critical role of the stress-activated Stub1-Hsp70 complex in promoting Treg cell inactivation, thus providing a potential therapeutic target for the intervention against autoimmune disease, infection and cancer.
Regulatory T cells (Treg) are critical for maintaining self-tolerance and immune homeostasis, but their suppressive function can impede effective antitumor immune responses. FOXP3 is a transcription factor expressed in Tregs that is required for their function. However, the pathways and microenvironmental cues governing FOXP3 expression and Treg function are not completely understood. Herein, we report that YAP, a coactivator of the Hippo pathway, is highly expressed in Tregs and bolsters FOXP3 expression and Treg function and This potentiation stemmed from YAP-dependent upregulation of activin signaling, which amplifies TGFβ/SMAD activation in Tregs. YAP deficiency resulted in dysfunctional Tregs unable to suppress antitumor immunity or promote tumor growth in mice. Chemical YAP antagonism and knockout or blockade of the YAP-regulated activin receptor similarly improved antitumor immunity. Thus, we identify YAP as an unexpected amplifier of a Treg-reinforcing pathway with significant potential as an anticancer immunotherapeutic target. Tregs suppress antitumor immunity, and pathways supporting their function can be novel immunotherapy targets. Here, the selective expression of YAP by Tregs, its importance for their function, and its unexpected enhancement of pro-Treg Activin/SMAD signaling are reported, as are validations of potential cancer-fighting antagonists of YAP and its regulatory targets. .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.