Summary Tapeworms cause debilitating neglected diseases that can be deadly and often require surgery due to ineffective drugs. Here we present the first analysis of tapeworm genome sequences using the human-infective species Echinococcus multilocularis, E. granulosus, Taenia solium and the laboratory model Hymenolepis microstoma as examples. The 115-141 megabase genomes offer insights into the evolution of parasitism. Synteny is maintained with distantly related blood flukes but we find extreme losses of genes and pathways ubiquitous in other animals, including 34 homeobox families and several determinants of stem cell fate. Tapeworms have species-specific expansions of non-canonical heat shock proteins and families of known antigens; specialised detoxification pathways, and metabolism finely tuned to rely on nutrients scavenged from their hosts. We identify new potential drug targets, including those on which existing pharmaceuticals may act. The genomes provide a rich resource to underpin the development of urgently needed treatments and control.
The Para rubber tree (Hevea brasiliensis) is an economically important tropical tree species that produces natural rubber, an essential industrial raw material. Here we present a high-quality genome assembly of this species (1.37 Gb, scaffold N50 = 1.28 Mb) that covers 93.8% of the genome (1.47 Gb) and harbours 43,792 predicted protein-coding genes. A striking expansion of the REF/SRPP (rubber elongation factor/small rubber particle protein) gene family and its divergence into several laticifer-specific isoforms seem crucial for rubber biosynthesis. The REF/SRPP family has isoforms with sizes similar to or larger than SRPP1 (204 amino acids) in 17 other plants examined, but no isoforms with similar sizes to REF1 (138 amino acids), the predominant molecular variant. A pivotal point in Hevea evolution was the emergence of REF1, which is located on the surface of large rubber particles that account for 93% of rubber in the latex (despite constituting only 6% of total rubber particles, large and small). The stringent control of ethylene synthesis under active ethylene signalling and response in laticifers resolves a longstanding mystery of ethylene stimulation in rubber production. Our study, which includes the re-sequencing of five other Hevea cultivars and extensive RNA-seq data, provides a valuable resource for functional genomics and tools for breeding elite Hevea cultivars.
gThe bovine rumen represents a highly specialized bioreactor where plant cell wall polysaccharides (PCWPs) are efficiently deconstructed via numerous enzymes produced by resident microorganisms. Although a large number of fibrolytic genes from rumen microorganisms have been identified, it remains unclear how they are expressed in a coordinated manner to efficiently degrade PCWPs. In this study, we performed a metatranscriptomic analysis of the rumen microbiomes of adult Holstein cows fed a fiber diet and obtained a total of 1,107,083 high-quality non-rRNA reads with an average length of 483 nucleotides. Transcripts encoding glycoside hydrolases (GHs) and carbohydrate binding modules (CBMs) accounted for ϳ1% and ϳ0.1% of the total non-rRNAs, respectively. The majority (ϳ98%) of the putative cellulases belonged to four GH families (i.e., GH5, GH9, GH45, and GH48) and were primarily synthesized by Ruminococcus and Fibrobacter. Notably, transcripts for GH48 cellobiohydrolases were relatively abundant compared to the abundance of transcripts for other cellulases. Two-thirds of the putative hemicellulases were of the GH10, GH11, and GH26 types and were produced by members of the genera Ruminococcus, Prevotella, and Fibrobacter. Most (ϳ82%) predicted oligosaccharide-degrading enzymes were GH1, GH2, GH3, and GH43 proteins and were from a diverse group of microorganisms. Transcripts for CBM10 and dockerin, key components of the cellulosome, were also relatively abundant. Our results provide metatranscriptomic evidence in support of the notion that members of the genera Ruminococcus, Fibrobacter, and Prevotella are predominant PCWP degraders and point to the significant contribution of GH48 cellobiohydrolases and cellulosome-like structures to efficient PCWP degradation in the cow rumen. In nature, the cow rumen represents a highly specialized bioreactor wherein plant cell wall polysaccharides (PCWPs) are efficiently deconstructed. The extraordinary efficiency results from the concerted action of various enzymes produced by rumen-resident bacteria, archaea, fungi, and protozoa. Three rumen bacteria, i.e., Ruminococcus flavefaciens, Ruminococcus albus, and Fibrobacter succinogenes, which can be isolated and cultivated in the laboratory, have been thought to serve a predominant role in the degradation of cellulosic PCWPs in this niche (1, 2). However, metagenomic quantitations based on 16S rRNA gene analysis indicate that these three species of bacteria account for only less than 5% of the total rumen microorganisms (3). In addition, Koike et al. estimated that ϳ77% of the rumen microorganisms attached to solid fibers are uncultured, as their 16S rRNA gene sequences share less than 97% similarity with those of known isolates (4).To bypass the cultivation step, metagenomic approaches involving the direct analysis of total DNA sequences have been extensively used to investigate the PCWP-degrading gastrointestinal microbes in a variety of herbivores, such as termite hindguts (5); cow (6-8), yak (9), and Svalbard reindeer (10) ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.