Grazing and topography have drastic effects on plant communities and soil properties. These effects are thought to influence arbuscular mycorrhizal (AM) fungi. However, the simultaneous impacts of grazing pressure (sheep ha) and topography on plant and soil factors and their relationship to the production of extra-radical AM hyphae are not well understood. Our 10-year study assessed relationships between grazing, plant species richness, aboveground plant productivity, soil nutrients, edaphic properties, and AM hyphal length density (HLD) in different topographic areas (flat or sloped). We found HLD linearly declined with increasing grazing pressure (1.5-9.0 sheep ha) in sloped areas, but HLD was greatest at moderate grazing pressure (4.5 sheep ha) in flat areas. Structural equation modeling indicates grazing reduces HLD by altering soil nutrient dynamics in sloped areas, but non-linearly influences HLD through plant community and edaphic changes in flat areas. Our findings highlight how topography influences key plant and soil factors, thus regulating the effects of grazing pressure on extra-radical hyphal production of AM fungi in grasslands. Understanding how grazing and topography influence AM fungi in semi-arid grasslands is vital, as globally, severe human population pressure and increasing demand for food aggravate the grazing intensity in grasslands.
Identifying spawning sites for broadcast spawning fish species is a key element of delineating critical habitat for managing and regulating marine fisheries. Genetic barcoding has enabled accurate taxonomic identification of individual fish eggs, overcoming limitations of morphological classification techniques. In this study, planktonic fish eggs were collected at 23 stations along the northwestern coast of Cuba and across the Florida Straits to United States waters. A total of 564 fish eggs were successfully identified to 89 taxa within 30 families, with the majority of taxa resolved to species. We provide new spawning information for Luvarus imperialis (Louvar), Bothus lunatus (Plate Fish), Eumegistus illustris (Brilliant Pomfret), and many economically important species. Data from most sites supported previously established patterns of eggs from neritic fish species being found on continental shelves and oceanic species spawning over deeper waters. However, some sites deviated from this pattern, with eggs from reef‐associated fish species detected in the deep waters of the Florida Straits and pelagic species detected in the shallow, continental shelf waters off the coast of northwestern Cuba. Further investigation using satellite imagery revealed the presence of a mesoscale cyclonic eddy that likely entrained neritic fish eggs and transported them into the Florida Straits. The technique of combining DNA‐based fish egg identification with remotely‐sensed hydrodynamics provides an important new tool for assessing the interplay of regional oceanography with fish spawning strategies.
An integrative biomarker approach was employed to evaluate the environmental quality of the north coast of Shandong Peninsula along the southern Bohai Sea of China, where pollution is an imminent threat due to rapid urbanization and industrialization. A battery of biomarkers and the metal bioaccumulation in tissues of native oyster Crassostrea gigas were measured under field conditions. Integrative biomarker index (IBR) and metal body burden were calculated to differentiate the pollution status of seven sampling sites. According to our results, Xinzhuang (XZ) site was the most severely contaminated, with the highest IBR value of 3.58, while the lowest IBR value (0.04) was obtained at Penglai (PL). Such an integrated biomarker approach was proved as a useful method for environmental quality assessment in the study area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.