The dissemination of Influenza A virus (IAV) throughout the world has become one of the main concerns for the health of both animals and human beings. An efficient and sensitive diagnostic tool is thus needed for the early detection of IAV. Here, we developed a wash-free magnetic bioassay and further integrated it with a handheld platform based on giant-magnetoresistance (GMR) sensors. The wash-free magnetic bioassay significantly accelerates and simplifies the detection process. This brand-new system was successful in detecting both IAV nucleoprotein and IAV-contained nasal swab samples from pigs on the farm. The limit of detection (LOD) is 0.3 nM for IAV nucleoprotein and 250 TCID
50
/mL for IAV-spiked nasal swab samples. The detection of nasal swab samples containing unpurified IAV was also performed, demonstrating the capability of the magnetic wash-free assay in the detection of biomarkers in complex sample matrix.
Giant magnetoresistive (GMR) biosensors have emerged as powerful tools for ultrasensitive, multiplexed, real-time electrical readout, and rapid biological/chemical detection while combining with magnetic particles. Finding appropriate magnetic nanoparticles (MNPs) and its influences on the detection signal is a vital aspect to the GMR bio-sensing technology. Here, we report a GMR sensor based detection system capable of stable and convenient connection, and real-time measurement. Five different types of MNPs with sizes ranging from 10 to 100 nm were investigated for GMR biosensing. The experiments were accomplished with the aid of DNA hybridization and detection architecture on GMR sensor surface. We found that different MNPs markedly affected the final detection signal, depending on their characteristics of magnetic moment, size, and surface-based binding ability, etc. This work may provide a useful guidance in selecting or preparing MNPs to enhance the sensitivity of GMR biosensors, and eventually lead to a versatile and portable device for molecular diagnostics.
Hyperviscosity syndrome is triggered by high blood viscosity in the human body. This syndrome can result in retinopathy, vertigo, coma, and other unanticipated complications. Serum viscosity is one of the important factors affecting whole blood viscosity, which is regarded as an indicator of general health. In this letter, we propose and demonstrate a Brownian relaxation-based mixing frequency method to test human serum viscosity. This method uses excitatory and detection coils and Brownian relaxation-dominated superparamagnetic nanoparticles, which are sensitive to variables of the liquid environment such as viscosity and temperature. We collect the harmonic signals produced by magnetic nanoparticles and estimate the viscosity of unknown solutions by comparison to the calibration curves. An in vitro human serum viscosity test is performed in less than 1.5 min.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.