This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
The aging process may lead to the degradation of lower extremity function in the elderly population, which can restrict their daily quality of life and gradually increase the fall risk. We aimed to determine whether objective measures of physical function could predict subsequent falls. Ground reaction force (GRF) data, which was quantified by sample entropy, was collected by foot force sensors. Thirty eight subjects (23 fallers and 15 non-fallers) participated in functional movement tests, including walking and sit-to-stand (STS). A feature selection algorithm was used to select relevant features to classify the elderly into two groups: at risk and not at risk of falling down, for three KNN-based classifiers: local mean-based k-nearest neighbor (LMKNN), pseudo nearest neighbor (PNN), local mean pseudo nearest neighbor (LMPNN) classification. We compared classification performances, and achieved the best results with LMPNN, with sensitivity, specificity and accuracy all 100%. Moreover, a subset of GRFs was significantly different between the two groups via Wilcoxon rank sum test, which is compatible with the classification results. This method could potentially be used by non-experts to monitor balance and the risk of falling down in the elderly population.
This paper proposes a hybrid model developed through wiser integration of wavelet transforms, floating point GA and artificial neural networks for prediction of short-term load. The use of wavelet transforms has added the capability of capturing of both global trend and hidden templates in loads, which is otherwise very difficult to incorporate into the prediction model of ANN. Auto-configuring RBF networks are used for predicting the wavelet coefficients of the future loads. Floating point GA (FPGA) is used for optimizing the RBF networks. The use of GA optimized RBF network has added to the model the online prediction capability of short-term loads accurately. The performance of the proposed model is validated using Queensland electricity demand data from the Australian National Electricity Market. Results demonstrate that the proposed model is more accurate as compared to RBF only model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.