Abstract. Long-term measurements of aerosol optical depths (AODs) at 440 nm and Ångström exponents (AE) between 440 and 870 nm made for CARSNET were compiled into a climatology of aerosol optical properties for China. Quality-assured monthly mean AODs are presented for 50 sites representing remote, rural, and urban areas. AODs were 0.14, 0.34, 0.42, 0.54, and 0.74 at remote stations, rural/desert regions, the Loess Plateau, central and eastern China, and urban sites, respectively, and the corresponding AE values were 0.97, 0.55, 0.82, 1.19, and 1.05. AODs increased from north to south, with low values (< 0.20) over the Tibetan Plateau and northwestern China and high AODs (> 0.60) in central and eastern China where industrial emissions and anthropogenic activities were likely sources. AODs were 0.20–0.40 in semi-arid and arid regions and some background areas in northern and northeastern China. AEs were > 1.20 over the southern reaches of the Yangtze River and at clean sites in northeastern China. In the northwestern deserts and industrial parts of northeast China, AEs were lower (< 0.80) compared with central and eastern regions. Dust events in spring, hygroscopic particle growth during summer, and biomass burning contribute the high AODs, especially in northern and eastern China. The AODs show decreasing trends from 2006 to 2009 but increased ~ 0.03 per year from 2009 to 2013.
Abstract. With the increase in economic development over the past thirty years, many large cities in eastern and southwestern China are experiencing increased haze events and atmospheric pollution, causing significant impacts on the regional environment and even climate. However, knowledge on the aerosol physical and chemical properties in heavy haze conditions is still insufficient. In this study, two winter heavy haze events in Beijing that occurred in 2011 and 2012 were selected and investigated by using the ground-based remote sensing measurements. We used a CIMEL CE318 sunsky radiometer to retrieve haze aerosol optical, physical and chemical properties, including aerosol optical depth (AOD), size distribution, complex refractive indices and aerosol fractions identified as black carbon (BC), brown carbon (BrC), mineral dust (DU), ammonium sulfate-like (AS) components and aerosol water content (AW). The retrieval results from a total of five haze days showed that the aerosol loading and properties during the two winter haze events were comparable. Therefore, average heavy haze property parameters were drawn to present a research case for future studies. The average AOD is about 3.0 at 440 nm, and the Ångström exponent is 1.3 from 440 to 870 nm. The fine-mode AOD is 2.8 corresponding to a fine-mode fraction of 0.93. The coarse particles occupied a considerable volume fraction of the bimodal size distribution in winter haze events, with the mean particle radius of 0.21 and 2.9 µm for the fine and coarse modes respectively. The real part of the refractive indices exhibited a relatively flat spectral behavior with an average value of 1.48 from 440 to 1020 nm. The imaginary part showed spectral variation, with the value at 440 nm (about 0.013) higher than the other three wavelengths (about 0.008 at 675 nm). The aerosol composition retrieval results showed that volume fractions of BC, BrC, DU, AS and AW are 1, 2, 49, 15 and 33 %, respectively, on average for the investigated haze events. The preliminary uncertainty estimation and comparison of these remote sensing results with in situ BC and PM 2.5 measurements are also presented in the paper.
The posterior silk gland (PSG) is the most important suborgan responsible for the synthesis and secretion of silk core fibroin proteins in silkworm. Here, we performed genome-scale expression profiling analysis of silkworm PSG at the fourth molting (M4) and at day 1 (V1), day 3 (V3), day 5 (V5), and wandering stage (W) of the fifth instar by microarray analysis with 22 987 probes. We found that the five genes of silk proteins secreted from PSG including fibroin heavy (H) and light (L) chains, P25, seroin 1, and seroin 2 basically showed obvious up-regulation at V3 which lasted to V5, while slight down-regulation at W. The expression of translation-related genes including ribosomal proteins and translation initiation factors generally remained stable from M4 to V5, whereas it showed clear down-regulation at W. Clustering analysis of the 643 significantly differentially expressed transcripts revealed that 43 of the important genes including seroin 1 and sugar transporter protein had co-expression patterns which were consistent with the rate changes of fibroin synthesis and PSG growth. Pathway analysis disclosed that the genes in different clusters might have co-regulations and direct interactions. These genes were supposed to be involved in the fibroin synthesis and secretion. The differential expression of several hormone-related genes also suggested their functions on the regulation of PSG development and fibroin synthesis. 2D gel-based proteomics and phosphoproteomics profiling revealed that the phosphorylated proteins accounted for no more than one-sixth of the total proteins at each stage, which was much lower than the level in normal eukaryotic cells. Changes in the phosphorylation status and levels of several proteins such as actin-depolymerizing factor 1 and enolase might be deeply involved in fibroin secretion and tissue development. Shotgun proteomic profiling combined with label-free quantification analysis on the PSG at V3, V5, and W revealed that many small heat shock proteins (sHSP) were specially expressed at W, which was substantially consistent with the results from 2-DE analysis, and implied the close correlations of sHSP with the physiological states of PSG at W. A majority of significantly up-regulated proteins at V5 were related to ribosome pathway, which was different from the microarray results, implying that the translation-level regulation of ribosomal proteins might be critical for fibroin synthesis. In contrast, the ubiquitin-proteasome pathway related proteins appeared obviously up-regulated at W, suggesting that the programmed cell death process of PSG cells might be started before cocooning.
Background: With the outbreak of coronavirus disease 2019 (COVID-19), a sudden case increase in late February 2020 led to deep concern globally. Italy, South Korea, Iran, France, Germany, Spain, the US and Japan are probably the countries with the most severe outbreaks.Collecting epidemiological data and predicting epidemic trends are important for the development and measurement of public intervention strategies. Epidemic prediction results yielded by different mathematical models are inconsistent; therefore, we sought to compare different models and their prediction results to generate objective conclusions. : medRxiv preprint logistic growth model, basic SEIR model and adjusted SEIR model were adopted for prediction.Given that different model inputs may infer different model outputs, we implemented three model predictions with three scenarios of epidemic development.Results: When comparing all 8 countries' short-term prediction results and peak predictions, the differences among the models were relatively large. The logistic growth model estimated a smaller epidemic size than the basic SERI model did; however, once we added parameters that considered the effects of public health interventions and control measures, the adjusted SERI model results demonstrated a considerably rapid deceleration of epidemic development. Our results demonstrated that contact rate, quarantine scale, and the initial quarantine time and length are important factors in controlling epidemic size and length. Conclusions:We demonstrated a comparative assessment of the predictions of the COVID-19 outbreak in eight high-risk countries using multiple methods. By forecasting epidemic size and peak time as well as simulating the effects of public health interventions, the intent of this paper is to help clarify the transmission dynamics of COVID-19 and recommend operation suggestions to slow down the epidemic. It is suggested that the quick detection of cases, sufficient implementation of quarantine and public self-protection behaviors are critical to slow down the epidemic.
Abstract. Long-term measurements of aerosol optical depths (AOD) and Angstrom exponents (Alpha) made for CARSNET were compiled into a climatology of aerosol optical properties for China. Quality-assured monthly mean AODs are presented for 50 sites representing remote, rural, and urban areas. AODs were 0.14, 0.34, 0.42, 0.54, and 0.74 at remote stations, rural/desert regions, the Loess Plateau, central and eastern China, and urban sites, respectively, and the corresponding Alpha values were 0.97, 0.55, 0.82, 1.19, and 1.05. AODs increased from north to south, with low values (< 0.20) over the Tibetan Plateau and northwestern China and high AODs (> 0.60) in central and eastern China where industrial emissions and anthropogenic activities were likely sources. AODs were 0.20–0.40 in semi-arid and arid regions and some background areas in north and northeast China. Alphas were > 1.20 over the southern reaches of the Yangtze River and at clean sites in northeastern China. In the northwestern deserts and industrial parts of northeast China, Alphas were lower (< 0.80) compared with central and eastern regions. Dust events in spring, hygroscopic particle growth during summer, and biomass burning contribute the high AODs, especially in northern and eastern China. The AODs show decreasing trends from 2006 to 2009 but increased ~ 0.03 yr−1 from 2009 to 2013.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.