PET hydrolase (PETase), which hydrolyzes polyethylene terephthalate (PET) into soluble building blocks, provides an attractive avenue for the bioconversion of plastics. Here we present the structures of a novel PETase from the PET-consuming microbe Ideonella sakaiensis in complex with substrate and product analogs. Through structural analyses, mutagenesis, and activity measurements, a substrate-binding mode is proposed, and several features critical for catalysis are elucidated.
Trypanosomatid parasites are the causative agents of many neglected tropical diseases and there is currently considerable interest in targeting endogenous sterol biosynthesis in these organisms as a route to the development of novel anti-infective drugs. Here, we report the first x-ray crystallographic structures of the enzyme squalene synthase (SQS) from a trypanosomatid parasite, Trypanosoma cruzi, the causative agent of Chagas disease. We obtained five structures of T. cruzi SQS and eight structures of human SQS with four classes of inhibitors: the substrate-analog S-thiolo-farnesyl diphosphate, the quinuclidines E5700 and ER119884, several lipophilic bisphosphonates, and the thiocyanate WC-9, with the structures of the two very potent quinuclidines suggesting strategies for selective inhibitor development. We also show that the lipophilic bisphosphonates have low nM activity against T. cruzi and inhibit endogenous sterol biosynthesis and that E5700 acts synergistically with the azole drug, posaconazole. The determination of the structures of trypanosomatid and human SQS enzymes with a diverse set of inhibitors active in cells provides insights into SQS inhibition, of interest in the context of the development of drugs against Chagas disease.
We
have obtained the structure of the bacterial diterpene synthase,
tuberculosinol/iso-tuberculosinol synthase (Rv3378c)
from Mycobacterium tuberculosis, a
target for anti-infective therapies that block virulence factor formation.
This phosphatase adopts the same fold as found in the Z- or cis-prenyltransferases. We also obtained structures
containing the tuberculosinyl diphosphate substrate together with
one bisphosphonate inhibitor-bound structure. These structures together
with the results of site-directed mutagenesis suggest an unusual mechanism
of action involving two Tyr residues. Given the similarity in local
and global structure between Rv3378c and the M. tuberculosis cis-decaprenyl diphosphate synthase (DPPS; Rv2361c),
the possibility exists for the development of inhibitors that target
not only virulence but also cell wall biosynthesis, based in part
on the structures reported here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.