This paper addresses the problem of channel estimation in multi-cell interference-limited cellular networks. We consider systems employing multiple antennas and are interested in both the finite and large-scale antenna number regimes (socalled "massive MIMO"). Such systems deal with the multi-cell interference by way of per-cell beamforming applied at each base station. Channel estimation in such networks, which is known to be hampered by the pilot contamination effect, constitute a major bottleneck for overall performance. We present a novel approach which tackles this problem by enabling a low-rate coordination between cells during the channel estimation phase itself. The coordination makes use of the additional second-order statistical information about the user channels, which are shown to offer a powerful way of discriminating across interfering users with even strongly correlated pilot sequences. Importantly, we demonstrate analytically that in the large-number-of-antennas regime, the pilot contamination effect is made to vanish completely under certain conditions on the channel covariance. Gains over the conventional channel estimation framework are confirmed by our simulations for even small antenna array sizes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.