Background The estimation of influenza-associated excess mortality in countries can help to improve estimates of the global mortality burden attributable to influenza virus infections. We did a study to estimate the influenza-associated excess respiratory mortality in mainland China for the 2010-11 through 2014-15 seasons. MethodsWe obtained provincial weekly influenza surveillance data and population mortality data for 161 disease surveillance points in 31 provinces in mainland China from the Chinese Center for Disease Control and Prevention for the years 2005-15. Disease surveillance points with an annual average mortality rate of less than 0•4% between 2005 and 2015 or an annual mortality rate of less than 0•3% in any given years were excluded. We extracted data for respiratory deaths based on codes J00-J99 under the tenth edition of the International Classification of Diseases. Data on respiratory mortality and population were stratified by age group (age <60 years and ≥60 years) and aggregated by province. The overall annual population data of each province and national annual respiratory mortality data were compiled from the China Statistical Yearbook. Influenza surveillance data on weekly proportion of samples testing positive for influenza virus by type or subtype for 31 provinces were extracted from the National Sentinel Hospitalbased Influenza Surveillance Network. We estimated influenza-associated excess respiratory mortality rates between the 2010-11 and 2014-15 seasons for 22 provinces with valid data in the country using linear regression models. Extrapolation of excess respiratory mortality rates was done using random-effect meta-regression models for nine provinces without valid data for a direct estimation of the rates. Findings We fitted the linear regression model with the data from 22 of 31 provinces in mainland China, representing 83•0% of the total population. We estimated that an annual mean of 88 100 (95% CI 84 200-92 000) influenza-associated excess respiratory deaths occurred in China in the 5 years studied, corresponding to 8•2% (95% CI 7•9-8•6) of respiratory deaths. The mean excess respiratory mortality rates per 100 000 person-seasons for influenza A(H1N1)pdm09, A(H3N2), and B viruses were 1•6 (95% CI 1•5-1•7), 2•6 (2•4-2•8), and 2•3 (2•1-2•5), respectively. Estimated excess respiratory mortality rates per 100 000 person-seasons were 1•5 (95% CI 1•1-1•9) for individuals younger than 60 years and 38•5 (36•8-40•2) for individuals aged 60 years or older. Approximately 71 000 (95% CI 67 800-74 100) influenzaassociated excess respiratory deaths occurred in individuals aged 60 years or older, corresponding to 80% of such deaths. Interpretation Influenza was associated with substantial excess respiratory mortality in China between 2010-11 and 2014-15 seasons, especially in older adults aged at least 60 years. Continuous and high-quality surveillance data across China are needed to improve the estimation of the disease burden attributable to influenza and the best public health interventions...
Recent studies have reported the role of Wnt/β-catenin signaling in hair cell (HC) development, regeneration, and differentiation in the mouse cochlea; however, the role of Wnt/β-catenin signaling in HC protection remains unknown. In this study, we took advantage of transgenic mice to specifically knockout or overactivate the canonical Wnt signaling mediator β-catenin in HCs, which allowed us to investigate the role of Wnt/β-catenin signaling in protecting HCs against neomycin-induced damage. We first showed that loss of β-catenin in HCs made them more vulnerable to neomycin-induced injury, while constitutive activation of β-catenin in HCs reduced HC loss both in vivo and in vitro. We then showed that loss of β-catenin in HCs increased caspase-mediated apoptosis induced by neomycin injury, while β-catenin overexpression inhibited caspase-mediated apoptosis. Finally, we demonstrated that loss of β-catenin in HCs led to increased expression of forkhead box O3 transcription factor (Foxo3) and Bim along with decreased expression of antioxidant enzymes; thus, there were increased levels of reactive oxygen species (ROS) after neomycin treatment that might be responsible for the increased aminoglycoside sensitivity of HCs. In contrast, β-catenin overexpression reduced Foxo3 and Bim expression and ROS levels, suggesting that β-catenin is protective against neomycin-induced HC loss. Our findings demonstrate that Wnt/β-catenin signaling has an important role in protecting HCs against neomycin-induced HC loss and thus might be a new therapeutic target for the prevention of HC death.
One of the most unfortunate side effects of aminoglycoside (AG) antibiotics such as neomycin is that they target sensory hair cells (HCs) and can cause permanent hearing impairment. We have observed HC loss and microglia-like cell (MLC) activation in the inner ear (cochlea) following neomycin administration. We focused on CX3CL1, a membrane-bound glycoprotein expressed on neurons and endothelial cells, as a way to understand how the MLCs are activated and the role these cells play in HC loss. CX3CL1 is the exclusive ligand for CX3CR1, which is a chemokine receptor expressed on the surface of macrophages and MLCs. In vitro experiments showed that the expression levels of CX3CL1 and CX3CR1 increased in the cochlea upon neomycin treatment, and CX3CL1 was expressed on HCs, while CX3CR1 was expressed on MLCs. When cultured with 1 μg/mL exogenous CX3CL1, MLCs were activated by CX3CL1, and the cytokine level was increased in the cochleae leading to apoptosis in the HCs. In CX3CR1 knockout mice, a significantly greater number of cochlear HCs survived than in wild-type mice when the cochlear explants were cultured with neomycin in vitro. Furthermore, inhibiting the activation of MLCs with minocycline reduced the neomycin-induced HC loss and improved the hearing function in neomycin-treated mice in vivo. Our results demonstrate that CX3CL1-induced MLC activation plays an important role in the induction of HC death and provide evidence for CX3CL1 and CX3CR1 as promising new therapeutic targets for the prevention of hearing loss.
The fifth epidemic wave of avian influenza A(H7N9) virus in China during 2016–2017 demonstrated a geographic range expansion and caused more human cases than any previous wave. The factors that may explain the recent range expansion and surge in incidence remain unknown. We investigated the effect of anthropogenic, poultry, and wetland variables on all epidemic waves. Poultry predictor variables became much more important in the last 2 epidemic waves than they were previously, supporting the assumption of much wider H7N9 transmission in the chicken reservoir. We show that the future range expansion of H7N9 to northern China may increase the risk of H7N9 epidemic peaks coinciding in time and space with those of seasonal influenza, leading to a higher risk of reassortments than before, although the risk is still low so far.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.