Histone variant H2A.Z-containing nucleosomes are incorporated at most eukaryotic promoters. This incorporation is mediated by the conserved SWR1 complex, which replaces histone H2A in canonical nucleosomes with H2A.Z in an ATP-dependent manner. Here, we show that promoter-proximal nucleosomes are highly heterogeneous for H2A.Z in Saccharomyces cerevisiae, with substantial representation of nucleosomes containing one, two, or zero H2A.Z molecules. SWR1-catalyzed H2A.Z replacement in vitro occurs in a stepwise and unidirectional fashion, one H2A.Z-H2B dimer at a time, producing heterotypic nucleosomes as intermediates and homotypic H2A.Z nucleosomes as end products. The ATPase activity of SWR1 is specifically stimulated by H2A-containing nucleosomes without ensuing histone H2A eviction. Remarkably, further addition of free H2A.Z-H2B dimer leads to hyperstimulation of ATPase activity, eviction of nucleosomal H2A-H2B, and deposition of H2A.Z-H2B. These results suggest that the combination of H2A-containing nucleosome and free H2A.Z-H2B dimer acting as both effector and substrate for SWR1 governs the specificity and outcome of the replacement reaction.
Summary The histone variant H2A.Z is a genome-wide signature of nucleosomes proximal to eukaryotic regulatory DNA. While the multi-subunit chromatin remodeler SWR1 is known to catalyze ATP-dependent deposition of H2A.Z, the mechanism of SWR1 recruitment to S. cerevisiae promoters has been unclear. A sensitive assay for competitive binding of di-nucleosome substrates revealed that SWR1 preferentially binds long nucleosome-free DNA and the adjoining nucleosome core particle, allowing discrimination of gene promoters over gene bodies. Analysis of mutants indicates that the conserved Swc2/YL1 subunit and the ATPase domain of Swr1 are mainly responsible for binding to substrate. SWR1 binding is enhanced on nucleosomes acetylated by the NuA4 histone acetyltransferase, but recognition of nucleosome-free and nucleosomal DNA is dominant over interaction with acetylated histones. Such hierarchical cooperation between DNA and histone signals expands the dynamic range of genetic switches, unifying classical gene regulation by DNA-binding factors with ATP-dependent nucleosome remodeling and post-translational histone modifications.
Purpose An ongoing outbreak of coronavirus disease 2019 (COVID-19) emerged in Wuhan since December 2019 and spread globally. However, information about critically ill patients with COVID-19 is still limited. We aimed to describe the clinical characteristics and outcomes of critically ill patients with COVID-19 and figure out the risk factors of mortality. Methods We extracted data retrospectively regarding 733 critically ill adult patients with laboratory-confirmed COVID-19 from 19 hospitals in China through January 1 to February 29, 2020. Demographic data, symptoms, laboratory values, comorbidities, treatments, and clinical outcomes were collected. The primary outcome was 28-day mortality. Data were compared between survivors and non-survivors. Results Of the 733 patients included in the study, the median (IQR) age was 65 (56–73) years and 256 (34.9%) were female. Among these patients, the median (IQR) APACHE II score was 10 (7 to 14) and 28-day mortality was 53.8%. Respiratory failure was the most common organ failure (597 [81.5%]), followed by shock (20%), thrombocytopenia (18.8%), central nervous system (8.6%) and renal dysfunction (8%). Multivariate Cox regression analysis showed that older age, malignancies, high APACHE II score, high d -dimer level, low PaO 2 /FiO 2 level, high creatinine level, high hscTnI level and low albumin level were independent risk factors of 28-day mortality in critically ill patients with COVID-19. Conclusion In this case series of critically ill patients with COVID-19 who were admitted into the ICU, more than half patients died at day 28. The higher percentage of organ failure in these patients indicated a significant demand for critical care resources. Electronic supplementary material The online version of this article (10.1007/s00134-020-06211-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.