Utilizing neuroimaging and machine learning (ML) to differentiate schizophrenia (SZ) patients from normal controls (NCs) and for detecting abnormal brain regions in schizophrenia has several benefits and can provide a reference for the clinical diagnosis of schizophrenia. In this study, structural magnetic resonance images (sMRIs) from SZ patients and NCs were used for discriminative analysis. is study proposed an ML framework based on coarse-to-fine feature selection. e proposed framework used two-sample t-tests to extract the differences between groups first, then further eliminated the nonrelevant and redundant features with recursive feature elimination (RFE), and finally utilized the support vector machine (SVM) to learn the decision models with selected gray matter (GM) and white matter (WM) features. Previous studies have tended to report differences at the group level instead of at the individual level and cannot be widely applied. e method proposed in this study extends the diagnosis to the individual level and has a higher recognition rate than previous methods. e experimental results of this study demonstrate that the proposed framework distinguishes SZ patients from NCs, with the highest classification accuracy reaching over 85%. e identified biomarkers are also consistent with previous literature findings. As a universal method, the proposed framework can be extended to diagnose other diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.