Materials capable of degradation upon exposure to light hold promise in a diverse range of applications including biomedical devices and smart coatings. Despite the rapid access to macromolecules with diverse compositions and architectures enabled by ring-opening metathesis polymerization (ROMP), a general strategy to introduce facile photodegradability into these polymers is lacking. Here, we report copolymers synthesized via ROMP that can be degraded by cleaving the backbone in both solution and solid states under irradiation with a 52 W, 390 nm Kessil LED to generate heterotelechelic low-molecular-weight fragments. To the best of our knowledge, this work represents the first instance of the incorporation of acylsilanes into a polymer backbone. Mechanistic investigation of the degradation process supports the intermediacy of an α-siloxy carbene, formed via a 1,2-photo Brook rearrangement, which undergoes insertion into water followed by cleavage of the resulting hemiacetal.
The absorbent materials synthesized from biosources with low cost and high selectivity for oils and organic solvents have attracted increasing attention in the field of oil spillage and discharge of organic chemicals. We developed a convenient surface-grafting method to prepare efficient and recyclable biobased aerogels from epoxidized soybean oil (ESO)modified cellulose at room temperature. The porous network-like structure of the cellulose aerogel was still fully retained after undergoing hydrophobic modification with ESO. Moreover, the modified aerogels possessed excellent hydrophobicity with a water contact angle of 132.6°. Moreover, the absorbent ability of the hydrophobic cellulose aerogels was systematically assessed. The results showed that modified aerogels could retain more than 90% absorption capacity even after 30 absorption− desorption cycles, indicating that the ESO-grafted cellulose aerogels have practical applications in the oil−water separation from industrial wastewater and oil-leakage removal.
In this paper, a novel self-nanoemulsifying drug delivery system (SNEDDS) was used to improve the oral bioavailability in fasted state and diminish the food effect for rivaroxaban. Oil, surfactant, and co-surfactant were selected by saturated solubility study. IPM, Tween80, and 1,2-propanediol were finally selected as oil, surfactant, and co-surfactant, respectively. The pseudo-ternary-phase diagram was utilized to optimize the preliminary composition of SNEDDS formulation. The optimized rivaroxaban-SNEDDS formulation was selected by central composite design (CCD) of response surface methodology. Optimized SNEDDS formulation was evaluated for drug content, self-emulsifying time, droplet size, zeta potential, polydispersity index, Fourier transform-infrared (FTIR) spectroscopy, and transmission electron microscope (TEM). The drug dissolution profile compared to the commercial formulation Xarelto® (20 mg rivaroxaban) was determined in four different media (pH 1.2HCl, pH 4.5NaAc-HAc, pH 6.8PBS, and water). The result indicated that the SNEDDS formulation had successfully increased the drug solubility in four different media. A HPLC-MS method that indicated a high sensitivity, strong attribute, and high accuracy characteristic was built to measure the drug concentration in plasma. The fast/fed in vivo pharmacokinetics studies of SNEDDS formulation and Xarelto® were carried out in adult beagle dog, rivaroxaban with no food effect was achieved in SNEDDS formulation compared with Xarelto® in fed state. The result suggested that SNEDDS formulation in this study is useful to increase the oral bioavailability and diminish the food effect in fasted state.
Objective To examine the changes in retinal thickness of patients with diabetes without DR. Designs A randomization, crossover, retrospective practice. Participants 43 diabetic patients and 43 ethnic-, age-, and sex-matched controls. Methods Full retinal thicknesses of ten areas were assessed using spectral domain optical coherence tomography. Confounding variables, such as age, gender, and glycated haemoglobin (HbA1c) level, were assessed by regression analysis. Main Outcome Measures Mean retinal thickness of ten areas. Results The mean thickness of the fovea was 215.8 ± 18.9 μm in the diabetes group and 222.0 ± 18.6 μm in the control group (p = 0.04). The mean thickness of the temporal parafovea was 319.9 ± 16.7 μm in the diabetes group and 326.0 ± 14.4 μm in the control group (p = 0.01). The mean thickness of the temporal perifovea was 276.4 ± 27.9 μm in the diabetes group and 284.8 ± 17.4 μm in the control group (p = 0.02). There were no significant differences in retinal thickness between groups in other areas (p > 0.05). Regression analysis revealed that decreased retinal thickness of the temporal perifovea was associated with a higher HbA1c level (>8.7%) (p = 0.04). Conclusion and Relevance Subtle structural changes in the retina may occur in diabetes without DR. Decreased retinal thickness appeared to begin in the fovea and temporal areas. A high HbA1c level was the main factor influencing retinal thickness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.