The exposure of healthy subjects to high altitude represents a model to explore the pathophysiology of diseases related to tissue hypoxia. We explored a plasma metabolomics approach to detect alterations induced by the exposure of subjects to high altitude. Plasma samples were collected from 60 subjects both on plain and at high altitude (5300 m). Metabolite profiling was performed by gas chromatography-mass spectrometry (GC-MS) and ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOFMS) in conjunction with univariate and multivariate statistical analyses. ELISA assays were further employed to measure the levels of several relevant enzymes together with perturbed metabolic pathways. The results showed that hypobaric hypoxia caused significant and comprehensive metabolic changes, as represented by significant changes of 44 metabolites and 4 relevant enzymes. Using MetaboAnalyst 3.0, it was found that several key metabolic pathways were acutely perturbed. In addition, 5 differentially expressed metabolites in pre-exposure samples from the acute mountain sickness-susceptible (AMS-S) group compared with those from the AMS-resistant (AMS-R) group are identified, which warrant further validation as potential predictive biomarkers for AMS-S individuals. These results provide new insights for further understanding the pathophysiological mechanism of early acclimatization to hypobaric hypoxia and other diseases correlated to tissue hypoxia.
BACKGROUND: The G-protein-coupled formylpeptide receptor (FPR) that mediates chemotaxis of phagocytic leucocytes induced by bacterial and host-derived chemotactic peptides is selectively expressed by highly malignant human gliomas and contributes to tumour growth and angiogenesis. As invasion of surrounding normal tissues is one of the important features of tumour malignancy, we investigated the function of FPR in the invasive behaviour of human glioblastoma cells. METHODS: Cells (FPR þ and FPR À ) were isolated by single-cell cloning from a human glioblastoma cell line U-87MG. The FPR expression was assayed by flow cytometry and reverse transcription PCR. The function of FPR was investigated by chemotaxis and calcium flux induced by FPR agonist fMLF. Tumour cell motility was assayed by a wound-healing model in vitro. The growth and invasive phenotype were observed with subcutaneous implantation of tumour cells in nude mice. Over-expression of FPR in FPR À cells was performed by transfection of a plasmid vector-containing human FPR gene. RESULTS: One of the glioma clones F9 that expressed high level of FPR showed a more 'motile' phenotype in vitro as compared with a clone G3 without FPR expression. Although F9 and G3 clones both formed subcutaneous tumours in nude mice, only F9 tumours invaded surrounding mouse connective tissues. Over-expression of FPR in G3 clone (G3F) increased the cell motility in vitro and the capacity of the cells to form more rapidly growing and invasive tumours in nude mice. We further found that, in addition to supernatant of necrotic tumour cells, foetal calf serum and human serum used in culture media contained FPR agonist activity and increased the motility of FPR-expressing glioblastoma cells. CONCLUSION: The expression of FPR is responsible for increased motility of human glioblastoma cells and their formation of highly invasive tumours.
The evolutionary dynamics of tumor-associated neoantigens carry information about drug sensitivity and resistance to the immune checkpoint blockade (ICB). However, the spectrum of somatic mutations is highly heterogeneous among patients, making it difficult to track neoantigens by circulating tumor DNA (ctDNA) sequencing using "one size fits all" commercial gene panels. Thus, individually customized panels (ICPs) are needed to track neoantigen evolution comprehensively during ICB treatment. Dominant neoantigens are predicted from whole exome sequencing data for treatment-naïve tumor tissues. Panels targeting predicted neoantigens are used for personalized ctDNA sequencing. Analyzing ten patients with nonsmall cell lung cancer, ICPs are effective for tracking most predicted dominant neoantigens (80-100%) in serial peripheral blood samples, and to detect substantially more genes (18-30) than the capacity of current commercial gene panels. A more than 50% decrease in ctDNA concentration after eight weeks of ICB administration is associated with favorable progressionfree survival. Furthermore, at the individual level, the magnitude of the early ctDNA response is correlated with the subsequent change in tumor burden. The application of ICP-based ctDNA sequencing is expected to improve the understanding of ICB-driven tumor evolution and to provide personalized management strategies that optimize the clinical benefits of immunotherapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.