RationaleCardiomyocytes generated from human induced pluripotent stem cells (hiPSCs) are suggested as the most promising candidate to replenish cardiomyocyte loss in regenerative medicine. Little is known about their calcium homeostasis, the key process underlying excitation-contraction coupling.ObjectiveWe investigated the calcium handling properties of hiPSC-derived cardiomyocytes and compared with those from human embryonic stem cells (hESCs).Methods and ResultsWe differentiated cardiomyocytes from hiPSCs (IMR90 and KS1) and hESCs (H7 and HES3) with established protocols. Beating outgrowths from embryoid bodies were typically observed 2 weeks after induction. Cells in these outgrowths were stained positively for tropomyosin and sarcomeric alpha-actinin. Reverse-transcription polymerase chain reaction studies demonstrated the expressions of cardiac-specific markers in both hiPSC- and hESC-derived cardiomyocytes. Calcium handling properties of 20-day-old hiPSC- and hESC-derived cardiomyocytes were investigated using fluorescence confocal microscopy. Compared with hESC-derived cardiomyocytes, spontaneous calcium transients from both lines of hiPSC-derived cardiomyocytes were of significantly smaller amplitude and with slower maximal upstroke velocity. Better caffeine-induced calcium handling kinetics in hESC-CMs indicates a higher sacroplasmic recticulum calcium store. Furthermore, in contrast with hESC-derived cardiomyocytes, ryanodine did not reduce the amplitudes, maximal upstroke and decay velocity of calcium transients of hiPSC-derived cardiomyocytes. In addition, spatial inhomogeneity in temporal properties of calcium transients across the width of cardiomyocytes was more pronounced in hiPSC-derived cardiomyocytes than their hESC counterpart as revealed line-scan calcium imaging. Expressions of the key calcium-handling proteins including ryanodine recptor-2 (RyR2), sacroplasmic recticulum calcium-ATPase (SERCA), junction (Jun) and triadin (TRDN), were significantly lower in hiPSC than in hESCs.ConclusionsThe results indicate the calcium handling properties of hiPSC-derived cardiomyocytes are relatively immature to hESC counterparts.Electronic supplementary materialThe online version of this article (doi:10.1007/s12015-011-9273-3) contains supplementary material, which is available to authorized users.
AIMSWe identified an autosomal dominant non-sense mutation (R225X) in exon 4 of the lamin A/C (LMNA) gene in a Chinese family spanning 3 generations with familial dilated cardiomyopathy (DCM). In present study, we aim to generate induced pluripotent stem cells derived cardiomyocytes (iPSC-CMs) from an affected patient with R225X and another patient bearing LMNA frame-shift mutation for drug screening.METHODS and RESULTSHigher prevalence of nuclear bleb formation and micronucleation was present in LMNAR225X/WT and LMNAFramshift/WT iPSC-CMs. Under field electrical stimulation, percentage of LMNA-mutated iPSC-CMs exhibiting nuclear senescence and cellular apoptosis markedly increased. shRNA knockdown of LMNA replicated those phenotypes of the mutated LMNA field electrical stress. Pharmacological blockade of ERK1/2 pathway with MEK1/2 inhibitors, U0126 and selumetinib (AZD6244) significantly attenuated the pro-apoptotic effects of field electric stimulation on the mutated LMNA iPSC-CMs.CONCLUSIONLMNA-related DCM was modeled in-vitro using patient-specific iPSC-CMs. Our results demonstrated that haploinsufficiency due to R225X LMNA non-sense mutation was associated with accelerated nuclear senescence and apoptosis of iPSC- CMs under electrical stimulation, which can be significantly attenuated by therapeutic blockade of stress-related ERK1/2 pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.