SummaryThe specifidty of antibody (Ab) responses depends on focusing helper T (Th) lymphocyte signals to suitable B lymphocytes capable of binding foreign antigens (Ags), and away from nonspecific or self-reactive B cells. To investigate the molecular mechanisms that prevent the activation of self-reactive B lymphocytes, the activation requirements of B cells specific for the Ag hen egg lysozyme (HEL) obtained from immunoglobulin (Ig)-transgenic mice were compared with those of functionally tolerant B cells isolated from Ig-transgenic mice which also express soluble HEL. To eliminate the need for surface (s)Ig-mediated Ag uptake and presentation and allow the effects of slg signaling to be studied in isolation, we assessed the ability of allogeneic T cells from bm12 strain mice to provide in vivo help to C57BL/6 strain-transgenic B cells. Interestingly, nontolerant Ig-transgenic B cells required both allogeneic Th cells and binding of soluble HEL for efl~dent activation and Ab production. By contrast, tolerant self-reactive B cells from Ig/HEL double transgenic mice responded poorly to the same combination of allogeneic T cells and soluble HEL. The tolerant B cells were nevertheless normally responsive to stimulation with interleukin 4 and anti-CD40 Abs in vitro, suggesting that they retained the capacity to respond to mediators of T cell help. However, the tolerant B cells exhibited a proximal block in the slg signaling pathway which prevented activation of receptor-assodated tyrosine kinases in response to the binding of soluble HEL. The functional significance of this slg signaling defect was confirmed by using a more potent membrane-bound form of HEL capable of triggering slg signaling in tolerant B cells, which markedly restored their ability to collaborate with allogeneic Th cells and produce Ab. These findings indicate that Ag-specific B cells require two signals for mounting a T cell-dependent Ab response and identify regulation of slg signaling as a mechanism for controlling self-reactive B cells.
We describe a strategy for producing human monoclonal antibodies in mice by introducing large segments of the human heavy and kappa light chain loci contained on yeast artificial chromosomes into the mouse germline. Such mice produce a diverse repertoire of human heavy and light chains, and upon immunization with tetanus toxin have been used to derive antigen-specific, fully human monoclonal antibodies. Breeding such animals with mice engineered by gene targeting to be deficient in mouse immunoglobulin (Ig) production has led to a mouse strain in which high levels of antibodies are produced, mostly comprised of both human heavy and light chains. These strains should provide insight into the adoptive human antibody response and permit the development of fully human monoclonal antibodies with therapeutic potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.