Within the endemic invertebrate faunas of hydrothermal vents, five biogeographic provinces are recognized. Invertebrates at two Indian Ocean vent fields (Kairei and Edmond) belong to a sixth province, despite ecological settings and invertebrate-bacterial symbioses similar to those of both western Pacific and Atlantic vents. Most organisms found at these Indian Ocean vent fields have evolutionary affinities with western Pacific vent faunas, but a shrimp that ecologically dominates Indian Ocean vents closely resembles its Mid-Atlantic counterpart. These findings contribute to a global assessment of the biogeography of chemosynthetic faunas and indicate that the Indian Ocean vent community follows asymmetric assembly rules biased toward Pacific evolutionary alliances.
Germline mutations in the BRCA1 and BRCA2 genes are responsible for the predisposition and development of familial breast and/or ovarian cancer. Most mutations of BRCA1 and BRCA2 associated with breast and/or ovarian cancer result in truncated proteins. To investigate the presence of BRCA1 and BRCA2 germline mutations in Korean breast and/or ovarian cancer families, we screened a total of 27 cases from 21 families including two or more affected first- or second-degree relatives with breast and/or ovarian cancer. PTT, PCR-SSCP, and DHPLC analysis, followed by sequencing were used in the screening process. In nine families, we found BRCA1 and BRCA2 germline mutations that comprised four frameshift mutations and five nonsense mutations. All nine mutations led to premature termination producing shortened proteins. Among the nine mutations, three novel BRCA1 mutations (E1114X, Q1299X, 4159delGA) and two novel BRCA2 mutations (K467X, 8945delAA) were identified in this work.
To address the impacts of past climate changes, particularly since the last glacial period, on the history of the distribution and demography of marine species, we investigated the evolutionary and demographic responses of the intertidal batillariid gastropod, Batillaria attramentaria, to these changes, using the snail as a model species in the northwest Pacific. We applied phylogeographic and divergence population genetic approaches to mitochondrial COI sequences from B. attramentaria. To cover much of its distributional range, 197 individuals collected throughout Korea and 507 publically available sequences (mostly from Japan) were used. Finally, a Bayesian skyline plot (BSP) method was applied to reconstruct the demographic history of this species. We found four differentiated geographic groups around Korea, confirming the presence of two distinct, geographically subdivided haplogroups on the Japanese coastlines along the bifurcated routes of the warm Tsushima and Kuroshio Currents. These two haplogroups were estimated to have begun to split approximately 400,000 years ago. Population divergence analysis supported the hypothesis that the Yellow Sea was populated by a northward range expansion of a small fraction of founders that split from a southern ancestral population since the last glacial maximum (LGM: 26,000–19,000 years ago), when the southern area became re-submerged. BSP analyses on six geographically and genetically defined groups in Korea and Japan consistently demonstrated that each group has exponentially increased approximately since the LGM. This study resolved the phylogeography of B. attramentaria as a series of events connected over space and time; while paleoceanographic conditions determining the connectivity of neighboring seas in East Asia are responsible for the vicariance of this species, the postglacial sea-level rise and warming temperatures have played a crucial role in rapid range shifts and broad demographic expansions of its populations.
Plecoglossus altivelis (ayu) is an amphidromous fish widely distributed in Northeastern Asia from the East China Sea to the northern Japanese coastal waters, encompassing the Korean Peninsula within its range. The shore lines of northeastern region in Asia have severely fluctuated following glaciations in the Quaternary. In the present study, we investigate the population genetic structure and historical demographic change of P. altivelis at a population level in East Asia. Analysis of molecular variance (AMOVA) based on 244 mitochondrial control region DNA sequences clearly showed that as the sampling scope extended to a larger geographic area, genetic differentiation began to become significant, particularly among Northeastern populations. A series of hierarchical AMOVA could detect the genetic relationship of three closely located islands between Korea and Japan that might have been tightly connected by the regional Tsushima current. Neutrality and mismatch distribution analyses revealed a strong signature of a recent population expansion of P. altivelis in East Asia, estimated at 126 to 391 thousand years ago during the late Pleistocene. Therefore it suggests that the present population of P. altivelis traces back to its approximate demographic change long before the last glacial maximum. This contrasts our a priori expectation that the most recent glacial event might have the most crucial effect on the present day demography of marine organisms through bottleneck and subsequent increase of effective population size in this region
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.