Traffic prediction is the cornerstone of intelligent transportation system. Accurate traffic forecasting is essential for the applications of smart cities, i.e., intelligent traffic management and urban planning. Although various methods are proposed for spatio-temporal modeling, they ignore the dynamic characteristics of correlations among locations on road network. Meanwhile, most Recurrent Neural Network (RNN) based works are not efficient enough due to their recurrent operations. Additionally, there is a severe lack of fair comparison among different methods on the same datasets. To address the above challenges, in this paper, we propose a novel traffic prediction framework, named Dynamic Graph Convolutional Recurrent Network (DGCRN). In DGCRN, hyper-networks are designed to leverage and extract dynamic characteristics from node attributes, while the parameters of dynamic filters are generated at each time step. We filter the node embeddings and then use them to generate dynamic graph, which is integrated with pre-defined static graph. As far as we know, we are first to employ a generation method to model fine topology of dynamic graph at each time step. Further, to enhance efficiency and performance, we employ a training strategy for DGCRN by restricting the iteration number of decoder during forward and backward propagation. Finally, a reproducible standardized benchmark and a brand new representative traffic dataset are opened for fair comparison and further research. Extensive experiments on three datasets demonstrate that our model outperforms 15 baselines consistently. Source codes are available at https://github.com/tsinghua-fib-lab/Traffic-Benchmark.
It is essential to predict crowd flow precisely in a city, which is practically partitioned into irregular regions based on road networks and functionality. However, prior works mainly focus on grid-based crowd flow prediction, where a city is divided into many regular grids. Although Convolutional Neural Netwok (CNN) is powerful to capture spatial dependence from grid-based Euclidean data, it fails to tackle non-Euclidean data, which reflect the correlations among irregular regions. Besides, prior works fail to jointly capture the hierarchical spatio-temporal dependence from both regular and irregular regions. Finally, the correlations among regions are time-varying and functionality-related. However, the combination of dynamic and semantic attributes of regions are ignored by related works. To address the above challenges, in this paper, we propose a novel model to tackle the flow prediction task for irregular regions. First, we employ CNN and Graph Neural Network (GNN) to capture micro and macro spatial dependence among grid-based regions and irregular regions, respectively. Further, we think highly of the dynamic inter-region correlations and propose a location-aware and time-aware graph attention mechanism named Semantic Graph Attention Network (Semantic-GAT), based on dynamic node attribute embedding and multi-view graph reconstruction. Extensive experimental results based on two real-life datasets demonstrate that our model outperforms 10 baselines by reducing the prediction error around 8%.
This paper presents a fine-grained and multi-sourced dataset for environmental determinants of health collected from England cities. We provide health outcomes of citizens covering physical health (COVID-19 cases, asthma medication expenditure, etc.), mental health (psychological medication expenditure), and life expectancy estimations. We present the corresponding environmental determinants from four perspectives, including basic statistics (population, area, etc.), behavioural environment (availability of tobacco, health-care services, etc.), built environment (road density, street view features, etc.), and natural environment (air quality, temperature, etc.). To reveal regional differences, we extract and integrate massive environment and health indicators from heterogeneous sources into two unified spatial scales, i.e., at the middle layer super output area (MSOA) and the city level, via big data processing and deep learning. Our data holds great promise for diverse audiences, such as public health researchers and urban designers, to further unveil the environmental determinants of health and design methodology for a healthy, sustainable city.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.