Organic–inorganic lead trihalide perovskites have emerged as an outstanding photovoltaic material that demonstrated a high 17.9% conversion efficiency of sunlight to electricity in a short time. We have found a giant dielectric constant (GDC) phenomenon in these materials consisting on a low frequency dielectric constant in the dark of the order of ε0 = 1000. We also found an unprecedented behavior in which ε0 further increases under illumination or by charge injection at applied bias. We observe that ε0 increases nearly linearly with the illumination intensity up to an additional factor 1000 under 1 sun. Measurement of a variety of samples of different morphologies, compositions, and different types of contacts shows that the GDC is an intrinsic property of MAPbX3 (MA = CH3NH3 +). We hypothesize that the large dielectric response is induced by structural fluctuations. Photoinduced carriers modify the local unit cell equilibrium and change the polarizability, assisted by the freedom of rotation of MA. The study opens a way for the understanding of a key aspect of the photovoltaic operation of high efficiency perovskite solar cells.
Characteristic times of perovskite solar cells (PSCs) have been measured by different techniques: transient photovoltage decay, transient photoluminescence, and impedance spectroscopy. A slow dynamic process is detected that shows characteristic times in the seconds to milliseconds scale, with good quantitative agreement between transient photovoltage decay and impedance spectroscopy. Here, we show that this characteristic time is related with a novel slow dynamic process caused by the peculiar structural properties of lead halide perovskites and depending on perovskite crystal size and organic cation nature. This new process may lie at the basis of the current−voltage hysteresis reported for PSCs and could have important implications in PSC performance because it may give rise to distinct dynamical behavior with respect to other classes of photovoltaic devices. Furthermore, we show that low-frequency characteristic time, commonly associated with electronic carrier lifetime in other photovoltaic devices, cannot be attributed to a recombination process in the case of PSCs. SECTION: Energy Conversion and Storage; Energy and Charge Transport
Impedance spectroscopy offers access to all the different electronic and ionic processes taking place simultaneously in an operating solar cell. To date, its use on perovskite solar cells has been challenging because of the richness of the physical processes occurring within similar time domains. The aim of this work is to understand the general impedance response and propose a general equivalent circuit model that accounts for the different processes and gives access to quantitative analysis. When the electron-selective contacts and the thickness of the perovskite film are systematically modified, it is possible to distinguish between the characteristic impedance signals of the perovskite layer and those arising from the contacts. The study is carried out using mixed organic lead halogen perovskite (FA0.85MA0.15Pb(I0.85Br0.15)3) solar cells with three different electron-selective contacts: SnO2, TiO2, and Nb2O5. The contacts have been deposited by atomic layer deposition (ALD), which provides pinhole-free films and excellent thickness control in the absence of a mesoporous layer to simplify the impedance analysis. It was found that the interfacial impedance has a rich structure that reveals different capacitive processes, serial steps for electron extraction, and a prominent inductive loop related to negative capacitance at intermediate frequencies. Overall, the present report provides insights into the impedance response of perovskite solar cells which enable an understanding of the different electronic and ionic processes taking place during device operation.
The stability of perovskite solar cells is one of the major challenges for this technology to reach commercialization, with water believed to be the major degradation source. In this work, a range of devices containing different cathode metal contacts in the configuration ITO/PEDOT:PSS/MAPbI3/PCBM/Metal are fully electrically characterized before and after degradation caused by steady illumination during 4 h that induces a dramatic reduction in power conversion efficiency from values of 12 to 1.8%. We show that a decrease in performance and generation of the S-shape is associated with chemical degradation of the metal contact. Alternatively, use of Cr2O3/Cr as the contact enhances the stability, but modification of the energetic profile during steady illumination takes place, significantly reducing the performance. Several techniques including capacitance-voltage, X-ray diffraction, and optical absorption results suggest that the properties of the bulk perovskite layer are little affected in the device degradation process. Capacitance-voltage and impedance spectroscopy results show that the electrical properties of the cathode contact are being modified by generation of a dipole at the cathode that causes a large shift of the flat-band potential that modifies the interfacial energy barrier and impedes efficient extraction of electrons. Ionic movement in the perovskite layer changes the energy profile close to the contacts, modifying the energy level stabilization at the cathode. These results provide insights into the degradation mechanisms of perovskite solar cells and highlight the importance to further study the use of protecting layers to avoid the chemical reactivity of the perovskite with the external contacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.